【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(-2,2),B(-4,0),C(-4;-4),
(1)在y軸右側(cè),以O為位似中心,畫出△A'B'C′,使它與△ABC的相似比為1:2;
(2)根據(jù)(1)的作圖,sin∠A'C'B′=__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花卉種植基地準(zhǔn)備圍建一個面積為100平方米的矩形苗圃園種植玫瑰花,其中一邊靠墻,另外三邊用29米長的籬笆圍成.已知墻長為18米,為方便進(jìn)入,在墻的對面留出1米寬的門(如圖所示),求這個苗圃園垂直于墻的一邊長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點A(–3,0)、B(1,0).
(1)求平移后的拋物線的表達(dá)式.
(2)設(shè)平移后的拋物線交y軸于點C,在平移后的拋物線的對稱軸上有一動點P,當(dāng)BP與CP之和最小時,P點坐標(biāo)是多少?
(3)若y=x2與平移后的拋物線對稱軸交于D點,那么,在平移后的拋物線的對稱軸上,是否存在一點M,使得以M、O、D為頂點的三角形△BOD相似?若存在,求點M坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方面進(jìn)行量化考核.甲、乙、丙各項得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分(不計其他因素條件),請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點坐標(biāo)分別為A(-2,2),B(-4,0),C(-4;-4),
(1)在y軸右側(cè),以O為位似中心,畫出△A'B'C′,使它與△ABC的相似比為1:2;
(2)根據(jù)(1)的作圖,sin∠A'C'B′=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線交x軸于另一點C(3,0).
(1)求拋物線的解析式;
(2)求拋物線的對稱軸和頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠A=30°,AC=8,∠B=90°,點D在AB上,BD=,點P在△ABC的邊上,則當(dāng)AP=2PD時,PD的長為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為弦,D為弧AC的中點,AC、BD相交于點E.AP交BD的延長線于點P.∠PAC=2∠CBD.
(1)求證:AP是⊙O的切線;
(2)若PD=3,AE=5,求△APE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y=(m為常數(shù),且m≠0)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)y1<y2<0時,自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com