【題目】下列命題中,假命題是(

A.順次聯(lián)結(jié)任意四邊形四邊中點(diǎn)所得的四邊形是平行四邊形

B.順次聯(lián)結(jié)對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形

C.順次聯(lián)結(jié)對(duì)角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形

D.順次聯(lián)結(jié)兩組鄰邊互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形

【答案】D

【解析】

根據(jù)平行四邊形、特殊的平行四邊形的判定、中位線定理、中點(diǎn)四邊形的定義進(jìn)行判定即可.

觀察圖形:分別為的中點(diǎn),根據(jù)中位線定理:

A:順次聯(lián)結(jié)任意四邊形四邊中點(diǎn)所得的四邊形是平行四邊形,正確;

B:順次聯(lián)結(jié)對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是菱形,正確;

C:順次聯(lián)結(jié)對(duì)角線互相垂直的四邊形四邊中點(diǎn)所得的四邊形是矩形,正確;

D:順次聯(lián)結(jié)兩組鄰邊互相垂直的四邊形四邊中點(diǎn)所得的四邊形是平行四邊形,錯(cuò)誤.

故答案選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊直角三角板如圖1放置,等腰直角三角板ABC的直角頂點(diǎn)是點(diǎn)A,AB=AC=3,直角板EDF的直角頂點(diǎn)DBC上,且CDBD=12,∠F=30°.三角板ABC固定不動(dòng),將三角板EDF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α0°<α90°).

1)當(dāng)α=    時(shí),EFBC;

2)當(dāng)α=45°時(shí),三角板EDF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)至如圖2位置,設(shè)DFAC交于點(diǎn)M,DEAB于點(diǎn)N,求四邊形ANDM的面積.

3)如圖3,設(shè)CM=x,四邊形ANDM的面積為y,求y關(guān)于x的表達(dá)式(不用寫x的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a<0)A(-1,1)B(3,1)C(-2,y1),D(2,y2)四點(diǎn),則y1y2的大小關(guān)系是(

A.y1>y2B.y1=y2C.y1<y2D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)遵義紅色文化,傳承紅色文化精神,某校準(zhǔn)備組織學(xué)生開展研學(xué)活動(dòng).經(jīng)了解,有A.遵義會(huì)議會(huì)址、B.茍壩會(huì)議會(huì)址、C.婁山關(guān)紅軍戰(zhàn)斗遺址、D.四渡赤水紀(jì)念館共四個(gè)可選擇的研學(xué)基地.現(xiàn)隨機(jī)抽取部分學(xué)生對(duì)基地的選擇進(jìn)行調(diào)查,每人必須且只能選擇一個(gè)基地.根據(jù)調(diào)查結(jié)果繪制如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)統(tǒng)計(jì)圖中______,______;

2)若該校有1500名學(xué)生,請(qǐng)估計(jì)選擇基地的學(xué)生人數(shù);

3)某班在選擇基地的6名學(xué)生中有4名男同學(xué)和2名女同學(xué),需從中隨機(jī)選出2名同學(xué)擔(dān)任“小導(dǎo)游”,請(qǐng)用樹狀圖或列舉法求這2名同學(xué)恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從甲地出發(fā)以每小時(shí)80 km的速度勻速駛往乙地,一段時(shí)間后,一輛轎車從乙地出發(fā)沿同一條路勻速駛往甲地.貨車行駛2.5 h后,在距乙地160 km處與轎車相遇.圖中線段AB表示貨車離乙地的距離y1 km與貨車行駛時(shí)間x h的函數(shù)關(guān)系.

(1)求y1與x之間的函數(shù)表達(dá)式;

(2)若兩車同時(shí)到達(dá)各自目的地,在同一坐標(biāo)系中畫出轎車離乙地的距離y2與x的圖像,求該圖像與x軸交點(diǎn)坐標(biāo)并解釋其實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象軸交于點(diǎn)兩點(diǎn);與軸交于點(diǎn);對(duì)稱軸為直線,點(diǎn)的坐標(biāo)為,則下列結(jié)論:①;②;③;④,⑤其中正確的結(jié)論個(gè)數(shù)是(  )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以RtABC的直角邊AB為直徑作半圓⊙O與邊BC交于點(diǎn)D,過D作半圓的切線與邊AC交于點(diǎn)E,過EEFAB,與BC交于點(diǎn)F.若AB20OF7.5,則CD的長(zhǎng)為(  )

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的外接圓為OADO的直徑,過點(diǎn)BO的切線,交DA的延長(zhǎng)線于點(diǎn)E,連接BD,且∠E=∠DBC

1)求證:DB平分∠ADC

2)若EB10,CD9,tanABE,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)P在線段BC上(不含點(diǎn)B),BPE=ACB,PE交BO于點(diǎn)E,過點(diǎn)B作BFPE,垂足為F,交AC于點(diǎn)G.

(1) 當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖).求證:BOG≌△POE;(4分)

(2)通過觀察、測(cè)量、猜想:= ,并結(jié)合圖證明你的猜想;(5分)

(3)把正方形ABCD改為菱形,其他條件不變(如圖),若ACB=α,求的值.(用含α的式子表示)(5分)

查看答案和解析>>

同步練習(xí)冊(cè)答案