精英家教網 > 初中數學 > 題目詳情
(2010•清遠)如圖,在菱形ABCD中,∠A=60°,E、F分別是AD、CD上的兩點,且AE=DF.
求證:△ABE≌△DBF.

【答案】分析:由于在菱形ABCD中,∠A=60°,所以∠ADC=120°,所以∠BDF=∠BAE=60°,所以BD=AB,由于AE=DF,所以△ABE≌△DBF.
解答:證明:∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,
又∵∠A=60°,
∴△ABD和△BCD都是等邊三角形,
∴AB=DB,∠A=∠BDF=60°,
又∵AE=DF,
∴△ABE≌△DBF.
點評:此題考查了菱形的性質:菱形的四條邊都相等.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2010•清遠)如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經過B、C兩點,點A是拋物線與x軸的另一個交點.
(1)求拋物線的函數表達式;
(2)若點P在線段BC上,且S△PAC=S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年廣東省清遠市中考數學試卷(解析版) 題型:解答題

(2010•清遠)如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經過B、C兩點,點A是拋物線與x軸的另一個交點.
(1)求拋物線的函數表達式;
(2)若點P在線段BC上,且S△PAC=S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《圓》(15)(解析版) 題型:解答題

(2010•清遠)如下圖,在⊙O中,點P在直徑AB上運動,但與A、B兩點不重合,過點P作弦CE⊥AB,在上任取一點D,直線CD與直線AB交于點F,弦DE交直線AB于點M,連接CM.
(1)如圖1,當點P運動到與O點重合時,求∠FDM的度數.
(2)如圖2、圖3,當點P運動到與O點不重合時,求證:FM•OB=DF•MC.

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•清遠)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為( )

A.4cm
B.5cm
C.6cm
D.8cm

查看答案和解析>>

同步練習冊答案