【題目】如圖①,將筆記本活頁一角折過去,使角的頂點A落在A′處,BC為折痕;
(1)圖①中,若∠1=30°,則∠A′BD=_____;
(2)如果在圖②中改變∠1的大小,則BA的位置也隨之改變,又將活頁的另一角斜折過去,使BD邊與BA′重合,折痕為BE.那么∠CBE的度數(shù)是否會發(fā)生變化呢?請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長AB至點E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點F,連接AF,若CE=2,∠DAB=30°,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品廠從生產的袋裝食品中抽出樣品20袋,檢測每袋的質量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:
與標準質量的差值 (單位:克) | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質量比標準質量多還是少?多或少幾克?
(2)若標準質量為450克,則抽樣檢測的20袋食品的總質量為多少克?
(3)若該種食品的合格標準為450±5克,求該食品的抽樣檢測的合格率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為美化校園,安排甲、乙兩個工程隊進行綠化.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在各自獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若綠化區(qū)域面積為1800m2,學校每天需付給甲隊的綠化費用為0.4萬元,每天需付給乙隊的綠化費用為0.25萬元,設安排甲隊工作y天,綠化總費用為W萬元.
①求W與y的函數(shù)關系式;
②要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年安慶市體育考試跳繩項目為學生選考項目,下表是某班模擬考試時10名同學的測試成績(單位:個/分鐘),則關于這10名同學每分鐘跳繩的測試成績,下列說法錯誤的是( )
成績(個/分鐘) | 140 | 160 | 169 | 170 | 177 | 180 |
人數(shù) | 1 | 1 | 1 | 2 | 3 | 2 |
A. 眾數(shù)是177 B. 平均數(shù)是170 C. 中位數(shù)是173.5 D. 方差是135
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著近幾年我市私家車日越增多,超速行駛成為引發(fā)交通事故的主要原因之一.某中學數(shù)學活動小組為開展“文明駕駛、關愛家人、關愛他人”的活動,設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點P,在筆直的車道m(xù)上確定點O,使PO和m垂直,測得PO的長等于21米,在m上的同側取點A、B,使∠PAO=30°,∠PBO=60°.
(1)求A、B之間的路程(保留根號);
(2)已知本路段對校車限速為12米/秒若測得某校車從A到B用了2秒,這輛校車是否超速?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC和△DEC都是等腰三角形,點C為它們的公共直角頂點,連AD、BE,F為線段AD的中點,連CF.
(1)如圖1,當D點在BC上時,BE與CF的數(shù)量關系是 .
(2)如圖2,把△DEC繞C點順時針旋轉90°,其他條件不變,問(1)中的關系是否仍然成立?請說明理由.
(3)如圖3,把△DEC繞C點順時針旋轉一個鈍角,其他條件不變,問(1)中的關系是否仍然成立?如成立請證明,如果不成立,請寫出相應的正確的結論并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】據(jù)新浪網調查,在第十二屆全國人大二中全會后,全國網民對政府工作報告關注度非常高,大家關注的熱點話題分別有:消費、教育、環(huán)保、反腐及其它共五類,且關注五類熱點問題的網民的人數(shù)所占百分比如圖l所示,關注該五類熱點問題網民的人數(shù)的不完整條形統(tǒng)計如圖2,請根據(jù)圖中信息解答下列問題.
(1)求出圖l中關注“反腐”類問題的網民所占百分比x的值,并將圖2中的不完整的條形統(tǒng)計圖補充完整;
(2)為了深度了解成都網民對政府工作報告的想法,新浪網邀請成都市5名網民代表甲、乙、丙、丁、戊做客新浪訪談,且一次訪談只選2名代表.請你用列表法或畫樹狀圖的方法,求出一次所選代表恰好是丙和丁的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖網格中每個小正方形的邊長均為1,線段AB、CD的端點都在小正方形的頂點上.
(1)圖(1)中,畫一個以線段AB一邊的四邊形ABEF,且四邊形ABEF是面積為7的中心對稱圖形,點E、F都在小正方形的頂點上,并直接寫出線段BE的長;
(2)在圖(2)中,畫一個以線段CD為斜邊直角三角形CDG,且△CDG的面積是2,點G在小方形的頂點上。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com