【題目】如圖,四邊形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若線段AE=5,則S四邊形ABCD=
【答案】25.
【解析】
試題分析:過A點作AF⊥CD交CD的延長線于F點,由AE⊥BC,AF⊥CF,∠C=90°可得四邊形AECF為矩形,則∠2+∠3=90°,而∠BAD=90°,根據(jù)等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根據(jù)全等三角形的判定可得△ABE≌△ADF,由全等三角形的性質(zhì)有AE=AF=5,S△ABE=S△ADF,則S四邊形ABCD=S正方形AECF,然后根據(jù)正方形的面積公式計算即可.
試題解析:過A點作AF⊥CD交CD的延長線于F點,如圖,
∵AE⊥BC,AF⊥CF,
∴∠AEC=∠CFA=90°,
而∠C=90°,
∴四邊形AECF為矩形,
∴∠2+∠3=90°,
又∵∠BAD=90°,
∴∠1=∠2,
在△ABE和△ADF中
∴△ABE≌△ADF,
∴AE=AF=5,S△ABE=S△ADF,
∴四邊形AECF是邊長為5的正方形,
∴S四邊形ABCD=S正方形AECF=52=25.
科目:初中數(shù)學 來源: 題型:
【題目】下列敘述中正確的是( )
A. 直角三角形中,兩條邊的平方和等于第三邊的平方
B. 若三角形三個內(nèi)角度數(shù)之比為3:4:5,則該三角形是直角三角形
C. 在△ABC中,∠A、∠B、∠C的對邊分別為a、b、c,若,則∠B=90°
D. △ABC的三邊為a、b、c,且滿足 ,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,操場上有一根旗桿AH,為測量它的高度,在B和D處各立一根高1.5米的標桿BC、DE,兩桿相距30米,測得視線AC與地面的交點為F,視線AE與地面的交點為G,并且H、B、F、D、G都在同一直線上,測得BF為3米,DG為5米,求旗桿AH的高度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的3個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B順時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則線段AB掃過的圖形面積是平方單位(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S3.若S2=48,S3=9,則S1的值為( 。
A. 18 B. 12 C. 9 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD為較短的直角邊向△CDB的同側(cè)作Rt△DEC,滿足∠E=30°,∠DCE=90°,再用同樣的方法作Rt△FGC,∠FCG=90°,繼續(xù)用同樣的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com