分析 根據(jù)題意,知直線和圓有公共點(diǎn),則相切或相交.相切時(shí),設(shè)切點(diǎn)為C,連接OC.根據(jù)等腰直角三角形的直角邊是圓的半徑1,求得斜邊是$\sqrt{2}$,所以x的取值范圍是0≤x≤$\sqrt{2}$.
解答 解:設(shè)切點(diǎn)為C,連接OC,則圓的半徑OC=1,OC⊥PC,
∵∠AOB=45°,OA∥PC,
∴∠OPC=45°,
∴PC=OC=1,
∴OP=$\sqrt{2}$,
同理,原點(diǎn)左側(cè)的距離也是$\sqrt{2}$,且線段是正數(shù),
∴x的取值范圍是0<x≤$\sqrt{2}$.
故答案為:0<x≤$\sqrt{2}$.
點(diǎn)評(píng) 此題主要考查了直線與圓的位置關(guān)系,分別得出兩圓與圓相切時(shí)求出OP的長(zhǎng)是解決問(wèn)題的關(guān)鍵,難度一般,注意兩個(gè)極值點(diǎn)的尋找.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 任何兩個(gè)互為相反數(shù)的數(shù)的商為-1 | |
B. | 任何一個(gè)不是1的正數(shù)都大于它的倒數(shù) | |
C. | 若a>b>0,則$\frac{1}{a}>\frac{1}$ | |
D. | 若$\frac{1}{a}<-1$,則-1<a<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com