【題目】如圖,在正方形中,點是邊上的一點(不與、重合),點在的延長線上,且滿足,連接、,與邊交于點.
(1)求證:;
(2)如果,求證:.
【答案】(1)見解析;(2)見解析
【解析】
(1)由正方形的性質(zhì)得出AB=AD,∠CAD=∠ACB=45°,∠BAD=∠CDA=∠B=90°,然后根據(jù)等量代換得出∠BAM=∠DAN,利用ASA可證△ABM≌△ADN,從而利用全等三角形的性質(zhì)即可證明AM=AN;
(2)根據(jù)正方形的性質(zhì)和得出∠CAM=∠NAD,∠ACB=∠MNA=45°,從而有△AMC∽△AEN,則=,又因為AN=AM,所以有AN2=AEAC.
解:證明(1)∵四邊形ABCD是正方形,
∴AB=AD,∠CAD=∠ACB=45°,∠BAD=∠CDA=∠B=90°,
∴∠BAM+∠MAD=90°,∠ADN=90°
∵∠MAN=90°,
∴∠MAD+∠DAN=90°,
∴∠BAM=∠DAN,
且AD=AB,∠ABC=∠ADN=90°
∴△ABM≌△ADN(ASA)
∴AM=AN,
(2)∵AM=AN,∠MAN=90°,
∴∠MNA=45°,
∵∠CAD=2∠NAD=45°,
∴∠NAD=22.5°
∴∠CAM=∠MAN﹣∠CAD﹣∠NAD=22.5°
∴∠CAM=∠NAD,∠ACB=∠MNA=45°,
∴△AMC∽△AEN
∴=,且AN=AM,
∴AN2=AEAC
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,∠CBD=30°,則DF的長為____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級10個班師生舉行傳統(tǒng)詩詞進(jìn)校園文藝表演,每班2個節(jié)目,有詩詞吟誦與詩詞吟唱兩類節(jié)目,學(xué)校統(tǒng)計后發(fā)現(xiàn)詩詞吟誦類節(jié)目比詩詞吟唱類節(jié)目數(shù)的2倍少4個
(1)九年級師生表演的詩詞吟誦與詩詞吟唱類節(jié)目數(shù)各有多少個?
(2)該校八年級學(xué)生有詩詞編舞節(jié)目參與,在詩詞吟誦、詩詞吟唱、詩詞編舞三類節(jié)目中,每個節(jié)目的演出用時分別是5分鐘,6分鐘,8分鐘,預(yù)計所有演出節(jié)目交接用時共花16分鐘.若從14:30開始,17:00之前演出結(jié)束,問參與的詩詞編舞類節(jié)目最多能有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市將實行居民生活用電階梯電價方案,如下表,圖中折線反映了每戶居民每月電費(元)與用電量(度)間的函數(shù)關(guān)系.
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量(度) |
(1)小王家某月用電度,需交電費___________元;
(2)求第二檔電費(元)與用電量(度)之間的函數(shù)關(guān)系式;
(3)小王家某月用電度,交納電費元,請你求出第三檔每度電費比第二檔每度電費多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面坐標(biāo)內(nèi),矩形的頂點、、,拋物線經(jīng)過點,,的半徑為1,當(dāng)圓心在拋物線上從點運動到點,則在整個運動過程中,與矩形只有一個公共點的情況共出現(xiàn)______次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,將∠ABC繞點A按逆時針方向旋轉(zhuǎn)一定角度后,BC的對應(yīng)邊B'C'交CD邊于點G.連接BB'、CC',若AD=7,CG=4,AB'=B'G,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在中,,,.點由點出發(fā)沿方向向點勻速運動,同時點由點出發(fā)沿方向向點勻速運動,它們的速度均為.作于,連接,設(shè)運動時間為(),解答下列問題:
(1)設(shè)的面積為,求與之間的函數(shù)關(guān)系式,并求出的最大值;
(2)當(dāng)的值為________________時,是等腰三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com