【題目】下列五個命題:

(1)若直角三角形的兩條邊長為5和12,則第三邊長是13;

(2)如果a≥0,那么=a

(3)若點P(a,b)在第三象限,則點P(﹣a,﹣b+1)在第一象限;

(4)對角線互相垂直且相等的四邊形是正方形;

(5)兩邊及第三邊上的中線對應(yīng)相等的兩個三角形全等.

其中不正確命題的個數(shù)是(

A.2個 B.3個 C.4個 D.5個

【答案】A

【解析】

試題分析:(1)由于直角三角形的兩條邊長為5和12,這兩條邊沒有確定是否是直角邊,所以第三邊長不唯一,故命題錯誤;

(2)符合二次根式的意義,命題正確;

(3)∵點P(a,b)在第三象限,

∴a<0、b<0,

∴﹣a>0,﹣b+1>0,

∴點P(﹣a,﹣b+1)

在第一象限,故命題正確;

(4)正方形是對角線互相垂直平分且相等的四邊形,故命題錯誤;

(5)兩邊及第三邊上的中線對應(yīng)相等的兩個三角形全等是正確的.

A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為( )

A B C D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+b(k≠0)與兩坐標軸分別交于點B,C,A的坐標為(-2,0)點D的坐標為(1,0)

(1)試確定直線BC的函數(shù)關(guān)系式.

(2)p(x,y)是直線BC在第一象限內(nèi)的一個動點,試寫出ADP的面積Sx的函數(shù)關(guān)系式.

(3)P運動到什么位置時,ADP的面積為3?請寫出此時點P的坐標,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:∠BCF=∠B+∠F.求證:AB//EF .

證明:經(jīng)過點C作CD//AB

∴∠BCD=∠B.( )

∵∠BCF=∠B+∠F,(已知)

∴∠ ( )=∠F.( )

∴CD//EF.( )

∴AB//EF( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】投擲一枚質(zhì)地均勻的正方體骰子.

(1)下列說法中正確的有 (填序號)

①向上一面點數(shù)為1點和3點的可能性一樣大;

②投擲6次,向上一面點數(shù)為1點的一定會出現(xiàn)1次;

③連續(xù)投擲2次,向上一面的點數(shù)之和不可能等于13.

(2)如果小明連續(xù)投擲了10次,其中有3次出現(xiàn)向上一面點數(shù)為6點,這時小明說:投擲正方體骰子,向上一面點數(shù)為6點的概率是你同意他的說法嗎?說說你的理由.

(3)為了估計投擲正方體骰子出現(xiàn)6點朝上的概率,小亮采用轉(zhuǎn)盤來代替骰子做實驗.下圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,請你將轉(zhuǎn)盤分為2個扇形區(qū)域,分別涂上紅、白兩種顏色,使得轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止轉(zhuǎn)動后,指針落在紅色區(qū)域的概率與投擲正方體骰子出現(xiàn)6點朝上的概率相同.(友情提醒:在轉(zhuǎn)盤上用文字注明顏色和扇形圓心角的度數(shù).)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③A′CA=B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是( )

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,對角線AC,BD交于點O,EBD延長線上的點,且△ACE是等邊三角形.

(1)求證:四邊形ABCD是菱形;

(2)若∠AED=2EAD,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)前夕,某淘寶店主從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為2:3,單價和為200元.

(1)求A、B兩種禮盒的單價分別是多少元?

(2)該店主購進這兩種禮盒恰好用去9600元,且購進A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?

(3)根據(jù)市場行情,銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:

租金(單位:元/時)

挖掘土石方量(單位:m3/時)

甲型挖掘機

100

60

乙型挖掘機

120

80

1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?

2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

同步練習冊答案