【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2).延長CB交x軸于點A1,作第1個正方形A1B1C1C;延長C1B1交x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個正方形的面積是______.
【答案】5×()4030
【解析】解:如圖,∵四邊形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,
∴∠ABA1=90°,∠DAO+∠BAA1=180°﹣90°=90°,
∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA1,
在△AOD和A1BA中
∴△AOD∽△A1BA,
∴,∴BC=2A1B.
∴A1C=BC,則A2C1=A1C,A3C2=A2C1,
即后一個正方形的邊長是前一個正方形的邊長的倍.
∴第2016個正方形的邊長為BC.
∵A的坐標(biāo)為(1,0),D點坐標(biāo)為(0,2),∴BC=AD=.
∴第2011個正方形的面積為.
故答案為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它們的交點P在線段CD上,下面的結(jié)論:①AP⊥BP;②點P到直線AD,BC的距離相等;③PD=PC.其中正確的結(jié)論有( )
A. ①②③ B. ①② C. ① D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有A、B兩動點在線段MN上各自做不間斷往返勻速運動(即只要動點與線段MN的某一端點重合則立即轉(zhuǎn)身以同樣的速度向MN的另一端點運動,與端點重合之前動點運動方向、速度均不改變),已知A的速度為3米/秒,B的速度為2米/秒
(1)已知MN=100米,若B先從點M出發(fā),當(dāng)MB=5米時A從點M出發(fā),A出發(fā)后經(jīng)過 秒與B第一次重合;
(2)已知MN=100米,若A、B同時從點M出發(fā),經(jīng)過 秒A與B第一次重合;
(3)如圖2,若A、B同時從點M出發(fā),A與B第一次重合于點E,第二次重合于點F,且EF=20米,設(shè)MN=s米,列方程求s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OM⊥ON,垂足為O,三角板的直角頂點C落在∠MON的內(nèi)部,三角板的另兩條直角邊分別與ON、OM交于點D和點B.
(1)填空:∠OBC+∠ODC= ;
(2)如圖1:若DE平分∠ODC,BF平分∠CBM,求證:DE⊥BF:
(3)如圖2:若BF、DG分別平分∠OBC、∠ODC的外角,判斷BF與DG的位置關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求下列各式中的x的值:
(1)8x3+125=0;
(2)(x-3)2-9=0.
【答案】(1)x=-;(2)x1=6或x2=0.
【解析】試題分析:(1)立方根定義解方程.(2)平方根定義解方程.
試題解析:(1)8x3+125=0,
x3=,
x=-.
(2)(x-3)2-9=0,
(x-3)2=9,
x-3=,
x1=6或x2=0.
【題型】解答題
【結(jié)束】
19
【題目】(1)已知某數(shù)的平方根是和, 的立方根是,求的平方根.
(2)已知y=+-8,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°,AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB;②當(dāng)x=1時,四邊形ABCD是菱形;③當(dāng)x=2時,△BDD為等邊三角形.其中正確的是_______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索:小明和小亮在研究一個數(shù)學(xué)問題:已知AB∥CD,AB和CD都不經(jīng)過點P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據(jù);兩人的證明過程中,完全正確的是 .
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)課上,小明同學(xué)給小剛同學(xué)出了一道數(shù)形結(jié)合的綜合題,他是這樣出的:如圖,數(shù)軸上兩個動點 M,N 開始時所表示的數(shù)分別為﹣10,5,M,N 兩點各自以一定的速度在數(shù)軸上運動,且 M 點的運動速度為2個單位長度/s.
(1)M,N 兩點同時出發(fā)相向而行,在原點處相遇,求 N 點的運動速度.
(2)M,N 兩點按上面的各自速度同時出發(fā),向數(shù)軸正方向運動,幾秒時兩點相距6個單位長度?
(3)M,N 兩點按上面的各自速度同時出發(fā),向數(shù)軸負(fù)方向運動,與此同時,C 點從原點出發(fā)沿同方向運動,且在運動過程中,始終有 CN:CM=1:2.若干秒后,C 點在﹣12 處,求此時 N 點在數(shù)軸上的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫坐標(biāo)分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根據(jù)這個規(guī)律,第2 025個點的坐標(biāo)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com