【題目】如圖,在△ADC中,點B是邊DC上的一點,∠DAB=∠C, = .若△ADC的面積為18cm,求△ABC的面積.

【答案】解:∵∠DAB=∠C,∠D=∠D, ∴△ADC∽△BAD,
=( 2=( 2= ,
∵△ADC的面積為18cm2
∴△BDA的面積為8cm2 ,
∴△ABC的面積=△ADC的面積﹣△BDA的面積=10cm2
【解析】根據(jù)相似三角形的判定定理得到△ADC∽△BAD,根據(jù)相似三角形的面積比等于相似比的平方即可得到結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解相似三角形的判定與性質(zhì)的相關(guān)知識,掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是⊙O的直徑,BC是⊙O的弦,AD⊥BC,垂足為點E,AE=BC=16,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于點A(﹣3,2)和點B(1,m),連接BO并延長與反比例函數(shù)y= 的圖象交于點C.
(1)求一次函數(shù)y=k1x+b和反比例函數(shù)y= 的表達式;
(2)是否在雙曲線y= 上存在一點D,使得以點A、B、D、C為頂點的四邊形成為平行四邊形?若存在,請直接寫出點D的坐標,并求出該平行四邊形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線y=﹣x2+2mx與x軸的另一個交點為A.點P在一次函數(shù)y=2x﹣2m的圖象上,PH⊥x軸于H,直線AP交y軸于點C,點P的橫坐標為1.(點C不與點O重合)
(1)如圖1,當m=﹣1時,求點P的坐標.
(2)如圖2,當 時,問m為何值時
(3)是否存在m,使 ?若存在,求出所有滿足要求的m的值,并定出相對應(yīng)的點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= (a為常數(shù))的圖象經(jīng)過點B(﹣4,2).

(1)求a的值;
(2)如圖,過點B作直線AB與函數(shù)y= 的圖象交于點A,與x軸交于點C,且AB=3BC,過點A作直線AF⊥AB,交x軸于點F,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2cm,動點P從點A出發(fā),在正方形的邊上沿A→B→C的方向運動到點C停止,設(shè)點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關(guān)于x(cm)的函數(shù)關(guān)系的圖象是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,教室窗戶的高度AF為2.5米,遮陽蓬外端一點D到窗戶上椽的距離為AD,某一時刻太陽光從教室窗戶射入室內(nèi),與地面的夾角∠BPC為30°,PE為窗戶的一部分在教室地面所形成的影子且長為 米,試求AD的長度.(結(jié)果帶根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

同步練習冊答案