【題目】如圖所示,正比例函數(shù) 的圖象與反比例函數(shù) 在第一象限的圖象交于點(diǎn) ,過(guò)點(diǎn) 軸的垂線,垂足為 ,已知△OAM的面積為1.

(1)求反比例函數(shù)的解析式;
(2)如果點(diǎn) 為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn) 與點(diǎn) 不重合),且點(diǎn) 的橫坐標(biāo)為1,在 軸上求一點(diǎn) ,使 最小.

【答案】
(1)解:設(shè)A點(diǎn)的坐標(biāo)為( ),

.∴ .

,∴ .∴ .

∴反比例函數(shù)的解析式為


(2)解: 由 ∴A為 .

設(shè)A點(diǎn)關(guān)于 軸的對(duì)稱(chēng)點(diǎn)為C,則C點(diǎn)的坐標(biāo)為 .

如要在 軸上求一點(diǎn)P,使PA+PB最小.則P點(diǎn)應(yīng)為BC和x軸的交點(diǎn),如圖所示.

令直線BC的解析式為 .

∵B為(1,2),∴

∴BC的解析式為 .

當(dāng) 時(shí), .∴P點(diǎn)坐標(biāo)為 .


【解析】(1)根據(jù)反比例函數(shù)k的幾何意義,由已知△OAM的面積為1,設(shè)A點(diǎn)的坐標(biāo)為( a , b ),得出 a b = 1,即可求出k(k>0)的值,從而得出反比例函數(shù)的解析式。
(2)此題是在 x 軸上求一點(diǎn) P ,使 P A + P B 最小,根據(jù)軸對(duì)稱(chēng)的性質(zhì),先作出A點(diǎn)關(guān)于 x 軸的對(duì)稱(chēng)點(diǎn)為C,連接BC交x軸于點(diǎn)P,可得出點(diǎn)C的坐標(biāo),再求出直線BC的函數(shù)解析式,根據(jù)y=0,求出對(duì)應(yīng)的自變量的值,即可得出點(diǎn)P的坐標(biāo)。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí),掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法,以及對(duì)反比例函數(shù)的性質(zhì)的理解,了解性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),OD平分∠BOC,OE平分∠AOC,則下列說(shuō)法錯(cuò)誤的是(

A. DOE為直角B. DOC和∠AOE互余

C. AOD和∠DOC互補(bǔ)D. AOE和∠BOC互補(bǔ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:拋物線y=- +bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,且∠BAC=α,∠ABC= ,tanα-tanβ=2,∠ACB=90°.

(1)求點(diǎn)C的坐標(biāo);
(2)求拋物線的解析式;
(3)若拋物線的頂點(diǎn)為P,求四邊形ABPC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把直線y=﹣2x向上平移后,分別交y軸、x軸于A、B兩點(diǎn),直線AB經(jīng)過(guò)點(diǎn)(m,n)且2m+n=6,則點(diǎn)O到線段AB的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中, 的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,-4),B(3,-2), C(6,-3).

①畫(huà)出△ABC關(guān)于 軸對(duì)稱(chēng)的△A1B1C1
②以M點(diǎn)為位似中心,在網(wǎng)格中畫(huà)出△A1B1C1的位似圖形△A2B2C2 , 使△A2B2C2與△A1B1C1的相似比為2︰1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了預(yù)測(cè)本校應(yīng)屆畢業(yè)女生“一分鐘跳繩”項(xiàng)目考試情況,從九年級(jí)隨機(jī)抽取部分女生進(jìn)行該項(xiàng)目測(cè)試,并以測(cè)試數(shù)據(jù)為樣本,繪制出如圖所示的部分頻數(shù)分布直方圖(從左到右依次分為六個(gè)小組,每小組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問(wèn)題:

(1)補(bǔ)全頻數(shù)分布直方圖 , 并指出這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第小組;(1)
(2)若測(cè)試九年級(jí)女生“一分鐘跳繩”次數(shù)不低于130次的成績(jī)?yōu)閮?yōu)秀,本校九年級(jí)女生共有260人,請(qǐng)估計(jì)該校九年級(jí)女生“一分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的人數(shù);
(3)如測(cè)試九年級(jí)女生“一分鐘跳繩”次數(shù)不低于170次的成績(jī)?yōu)闈M(mǎn)分,在這個(gè)樣本中,從成績(jī)?yōu)閮?yōu)秀的女生中任選一人,她的成績(jī)?yōu)闈M(mǎn)分的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明有5張寫(xiě)著不同的數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列各問(wèn)題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是   ;

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是   

(3)從中取出4張卡片,用學(xué)過(guò)的運(yùn)算方法,使結(jié)果為24.寫(xiě)出運(yùn)算式子:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀短文,然后回答短文后面所給出的問(wèn)題:

對(duì)于三個(gè)數(shù)a、b、c的平均數(shù),最小的數(shù)都可以給出符號(hào)來(lái)表示,我們規(guī)定M{a,b,c}表示a,b,c這三個(gè)數(shù)的平均數(shù),min{a,bc}表示a,b,c這三個(gè)數(shù)中最小的數(shù),max{a,b,c}表示a,b,c這三個(gè)數(shù)中最大的數(shù).例如:M{1,2,3},min{1,23}=﹣1,max{12,3}3;M{1,2,a},min{12,a}

1)請(qǐng)?zhí)羁眨?/span>max{c1,cc1}   ;若m0,n0,min{3m,(n3m,﹣mn}   ;

2)若min{22x2,42x}2,求x的取值范圍;

3)若M{2,x1,2x}min{2,x12x},求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,BC=,且∠BAC=120°,點(diǎn)D是線段BC上的一動(dòng)點(diǎn)(不與點(diǎn)BC重合),連接AD,作∠ADE=30°,DEAC于點(diǎn)E

1)求證:∠BADEDC;

2)當(dāng)BD= 時(shí),△ABD≌△EDC,并說(shuō)明理由.

3)當(dāng)△ADE是直角三角形時(shí),求AD的長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案