如圖,在Rt△ABC中,∠B=90°,AB=3,BC=4,點(diǎn)D在BC上,以AC為對(duì)角線的所有ADCE中,DE的最小值是

[  ]

A.

2

B.

3

C.

4

D.

5

答案:B
解析:

  ∵在Rt△ABC中,∠B=90°,AB=3,BC=4,∴

  ∴四邊形ADCE是平行四邊形,

  ∴OD=OE,OA=OC.

  ∴當(dāng)OD取最小值時(shí),DE線段最短.此時(shí)OD⊥BC.

  ∴,

  ∴ED=2OD=3.

  故選B.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,在平行四邊形ABCD中,O是對(duì)角線AC的中點(diǎn),過O點(diǎn)作直線EF分別交BC、AD于點(diǎn)E、F.

(1)求證:BE=DF;

(2)若AC、EF將平行四邊形ABCD分成的四部分面積相等,指出E點(diǎn)的位置,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

在平行四邊形、菱形、矩形、正方形中,能夠找到一點(diǎn),使該點(diǎn)到各邊距離相等的圖形是

[  ]

A.

平行四邊形和菱形

B.

菱形和矩形

C.

矩形和正方形

D.

菱形和正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,在ABCD中,點(diǎn)E,F(xiàn)分別在AB、CD上,且AE=CF.

(1)求證:△ADE≌△CBF.

(2)若DF=BF,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的長為

[  ]

A.

B.

C.

4

D.

8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線,過點(diǎn)C作CE⊥BD于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長線于點(diǎn)F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

如圖,在矩形ABCD中,點(diǎn)E、F在BC邊上,且BE=CF,AF、DE交于點(diǎn)M.求證:AM=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

已知平行四邊形ABCD兩條對(duì)角線的交點(diǎn)是坐標(biāo)系的原點(diǎn),點(diǎn)A,B的坐標(biāo)分別為(-1,-5),(-1,2),則點(diǎn)C,D的坐標(biāo)分別是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新人教版(2012) 八年級(jí)下 題型:

下列各式中,能表示y是x的函數(shù)的為

[  ]

A.

y=|x|

B.

y2=x

C.

|y|=|x|

D.

y=±x

查看答案和解析>>

同步練習(xí)冊(cè)答案