如圖,在邊長(zhǎng)為2的正方形ABCD中,以點(diǎn)D為圓心、DC為半徑作,點(diǎn)E在AB上,且與A、B兩點(diǎn)均不重合,點(diǎn)M在AD上,且ME=MD,過點(diǎn)E作EF⊥ME,交BC于點(diǎn)F,連接DE、MF.
(1)求證:EF是所在⊙D的切線;
(2)當(dāng)MA=時(shí),求MF的長(zhǎng);
(3)試探究:△MFE能否是等腰直角三角形?若是,請(qǐng)直接寫出MF的長(zhǎng)度;若不是,請(qǐng)說明理由.

【答案】分析:(1)過點(diǎn)D作DG⊥EF于G,根據(jù)等邊對(duì)等角可得∠MDE=∠MED,然后根據(jù)等角的余角相等求出∠AED=∠GED,再利用“角角邊”證明△ADE和△GDE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AD=GD,再根據(jù)切線的定義即可得證;
(2)求出ME=MD=,然后利用勾股定理列式求出AE,再求出BE,根據(jù)同角的余角相等求出∠1=∠3,然后求出△AME和△BEF相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求出EF,再利用勾股定理列式計(jì)算即可得解;
(3)假設(shè)△MFE能是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得ME=EF,先利用“角角邊”證明△AME和△BEF全等,根據(jù)全等三角形對(duì)邊角相等可得AM=BE,設(shè)AM=BE=x,然后表示出MD,AE,再根據(jù)ME=MD,從而得到ME=AE,根據(jù)直角三角形斜邊大于直角邊可知△MEF不可能是等腰直角三角形.
解答:(1)證明:過點(diǎn)D作DG⊥EF于G,
∵M(jìn)E=MD,
∴∠MDE=∠MED,
∵EF⊥ME,
∴∠DME+∠GED=90°,
∵∠DAB=90°,
∴∠MDE+∠AED=90°,
∴∠AED=∠GED,
∵在△ADE和△GDE中,
,
∴△ADE≌△GDE(AAS),
∴AD=GD,
的半徑為DC,即AD的長(zhǎng)度,
∴EF是所在⊙D的切線;

(2)MA=時(shí),ME=MD=2-=,
在Rt△AME中,AE===1,
∴BE=AB-AE=2-1=1,
∵EF⊥ME,
∴∠1+∠2=180°-90°=90°,
∵∠B=90°,
∴∠2+∠3=90°,
∴∠1=∠3,
又∵∠DAB=∠B=90°,
∴△AME∽△BEF,
=,
=,
解得EF=
在Rt△MEF中,MF===;

(3)假設(shè)△MFE能是等腰直角三角形,
則ME=EF,
∵在△AME和△BEF中,
,
∴△AME≌△BEF(AAS),
∴MA=BE,
設(shè)AM=BE=x,
則MD=AD-MA=2-x,AE=AB-BE=2-x,
∵M(jìn)E=MD,
∴ME=2-x,
∴ME=AE,
∵M(jìn)E、AE分別是Rt△AME的斜邊與直角邊,
∴ME≠AE,
∴假設(shè)不成立,
故△MFE不能是等腰直角三角形.
點(diǎn)評(píng):本題考查了圓的綜合題型,主要考查了圓的切線的判定,全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,綜合性較強(qiáng),難度較大,(3)證明得到直角三角形的斜邊與直角邊相等的矛盾是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,如果邊長(zhǎng)為1的正六邊形ABCDEF繞著頂點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后與正六邊形AGHMNP重合,那么點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)
 
,點(diǎn)E在整個(gè)旋轉(zhuǎn)過程中,所經(jīng)過的路徑長(zhǎng)為
 
 (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在邊長(zhǎng)為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,
1
2
a
長(zhǎng)為半徑作
DE
,
EF
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長(zhǎng)為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時(shí)針方向向右作無滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過的路徑的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在邊長(zhǎng)為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,數(shù)學(xué)公式長(zhǎng)為半徑作數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初三數(shù)學(xué)圓及旋轉(zhuǎn)題庫 第8講:弧長(zhǎng)和扇形面積(解析版) 題型:解答題

已知:如圖,在邊長(zhǎng)為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,長(zhǎng)為半徑作,,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案