(2013•閘北區(qū)二模)觀察方程①:x+
2
x
=3,方程②:x+
6
x
=5,方程③:x+
12
x
=7.
(1)方程①的根為:
x1=1,x2=2
x1=1,x2=2
;方程②的根為:
x1=2,x2=3
x1=2,x2=3
;方程③的根為:
x1=3,x2=4
x1=3,x2=4
;
(2)按規(guī)律寫出第四個方程:
x+
20
x
=9
x+
20
x
=9
;此分式方程的根為:
x1=4,x2=5
x1=4,x2=5
;
(3)寫出第n個方程(系數(shù)用n表示):
x+
n(n+1)
x
=2n+1
x+
n(n+1)
x
=2n+1
;此方程解是:
x1=n,x2=n+1
x1=n,x2=n+1
分析:先計算出方程的根,再根據(jù)根的變化規(guī)律求出方程的一般形式及根的變化規(guī)律.
解答:解:(1)兩邊同時乘以x得,x2-3x+2=0,
方程①根:x1=1,x2=2;
兩邊同時乘以x得,x2-5x+6=0,
方程②根:x1=2,x2=3;
兩邊同時乘以x得,x2-7x+12=0,
方程③根:x1=3,x2=4;
(2)方程④:x+
20
x
=9;方程④根:x1=4,x2=5.
(3)第n個方程:x+
n(n+1)
x
=2n+1.
此方程解:x1=n,x2=n+1.
故答案為:x1=1,x2=2;x1=2,x2=3;x1=3,x2=4;x+
20
x
=9;x1=4,x2=5;x+
n(n+1)
x
=2n+1;x1=n,x2=n+1.
點評:本題考查了分式方程的解,從題目中找出規(guī)律是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)如果關(guān)于x的方程x2-4x+m=0有兩個不相等的實數(shù)根,那么在下列數(shù)值中,m可以取的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)某人在調(diào)查了本班同學(xué)的體重情況后,畫出了頻數(shù)分布圖如圖.下列結(jié)論中,不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)計算:(1-
3
0=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)若1、x、2、3的平均數(shù)是3,這組數(shù)據(jù)的方差是
7
2
7
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)甲有兩張卡片,上面分別寫著0、1,乙也有兩張卡片,上面分別寫著2、3,他們各取出一張卡片,則取出的兩張卡片上寫的數(shù)所得之和為素數(shù)的概率是
3
4
3
4

查看答案和解析>>

同步練習(xí)冊答案