如圖(a)過反比例函數(shù)的圖象在第一象限內(nèi)的任意兩點A、B作x軸的垂線,垂足分別為C、D,連接AO、BO和AB,AC和OB的交點為E,設(shè)△AOB與梯形ACDB的面積分別為S與S,

1.試比較S與S的大。

2.如圖(b),已知直線與雙曲線交于M、N點,且點M的縱坐標(biāo)為2.

①求m的值;

②若過原點的另一條直線l交雙曲線于P、Q兩點(P點在第一象限),若由M、N、P、Q為頂點組成的四邊形面積為64,求P點的坐標(biāo)。

 

 

1.設(shè),則

,  同理

                              2分

                           3分

                                    4分

2.①設(shè),代入,得   ∴

                              5分

②由雙曲線的對稱性知OM=ON   OP=OQ

∴四邊形MPNQ是平行四邊形                    6分

過P, M作PH⊥軸于H   MF⊥軸于F

設(shè),則 ,MF=2

由(1)知

∵SMPNQ=64    ∴SPOM=16                    7

整理:或-18

整理:           11分

∵P在第一象限      ∴

                         12

 解析:略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關(guān)于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校研究性學(xué)習(xí)小組在研究有關(guān)反比例函及其圖象性質(zhì)的問題,時發(fā)現(xiàn)了三個重要結(jié)論.已知:A是反比例函數(shù)y=
kx
(k為非零常數(shù))的圖象上的一動點.
(1)如圖1過動點A作AM⊥x軸,AN⊥y軸,垂足分別為M、N,求證:矩形OMAN的面積是定值;
(2)如圖2,過動點A且與雙曲線有唯一公共點A的直線l與x軸交于點C,y軸交于點D,求證:△OCD的面積是定值;
(3)如圖3,若過動點A的直線與雙曲線交于另一點B,與x軸交于點C,與y軸交于點D.求證:AD=BC.(任選一種證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某校研究性學(xué)習(xí)小組在研究有關(guān)反比例函及其圖象性質(zhì)的問題,時發(fā)現(xiàn)了三個重要結(jié)論.已知:A是反比例函數(shù)數(shù)學(xué)公式(k為非零常數(shù))的圖象上的一動點.
(1)如圖1過動點A作AM⊥x軸,AN⊥y軸,垂足分別為M、N,求證:矩形OMAN的面積是定值;
(2)如圖2,過動點A且與雙曲線有唯一公共點A的直線l與x軸交于點C,y軸交于點D,求證:△OCD的面積是定值;
(3)如圖3,若過動點A的直線與雙曲線交于另一點B,與x軸交于點C,與y軸交于點D.求證:AD=BC.(任選一種證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省鎮(zhèn)江中學(xué)高中單獨招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

某校研究性學(xué)習(xí)小組在研究有關(guān)反比例函及其圖象性質(zhì)的問題,時發(fā)現(xiàn)了三個重要結(jié)論.已知:A是反比例函數(shù)(k為非零常數(shù))的圖象上的一動點.
(1)如圖1過動點A作AM⊥x軸,AN⊥y軸,垂足分別為M、N,求證:矩形OMAN的面積是定值;
(2)如圖2,過動點A且與雙曲線有唯一公共點A的直線l與x軸交于點C,y軸交于點D,求證:△OCD的面積是定值;
(3)如圖3,若過動點A的直線與雙曲線交于另一點B,與x軸交于點C,與y軸交于點D.求證:AD=BC.(任選一種證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:填空題

如圖,已知反比例函數(shù)點A在y軸的正半軸上,過點A作直線
BC∥x軸,且分別與兩個反比例函數(shù)的圖象交于點B和C,連接OC、OB。若△BOC的面積為,AC:AB=2:3,則k1=(    ),k2=(    )。

查看答案和解析>>

同步練習(xí)冊答案