若點(diǎn)A繞點(diǎn)O旋轉(zhuǎn)360°,它經(jīng)過(guò)的路線是______________.

答案:略
解析:

以點(diǎn)O為圓心,OA為半徑的圓


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC 中,∠ABC=∠CAB=72°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(36°<α<180°)得到△ADE,連接CE,線段BD(或其延長(zhǎng)線)分別交AC、CE于G、F點(diǎn).
(1)求證:△ABG∽△FCG;
(2)在旋轉(zhuǎn)的過(guò)程中,是否存在一個(gè)時(shí)刻,使得△ABG與△FCG全等?若存在,求出此時(shí)旋轉(zhuǎn)角α的大。
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•益陽(yáng))如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.
(1)求證:AE=BC;
(2)如圖(2),過(guò)點(diǎn)E作EF∥BC交AB于F,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′,BF′,求證:CE′=BF′;
(3)在(2)的旋轉(zhuǎn)過(guò)程中是否存在CE′∥AB?若存在,求出相應(yīng)的旋轉(zhuǎn)角α;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•本溪一模)(1)已知,如圖①,Rt△ABC∽R(shí)t△AB′C′,相似比為k,∠ACB=∠AC′B′=90°,且∠A=30°,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α后,點(diǎn)C′恰好在邊BC的延長(zhǎng)線上,如圖②,若四邊形ABB′C′是矩形,求α的度數(shù)及k的值;
(2)如圖③,等腰△ABC∽等腰△AB′C′,相似比為k,AB=AC,AB′=AC′,∠A=36°,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α后,點(diǎn)B′恰好在BC邊的延長(zhǎng)線上,如圖④,若AC′∥BB′,①判斷四邊形ABB′C′的形狀并說(shuō)明理由;②α=
72°
72°
,k=
-1+
5
2
-1+
5
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,扇形AOB中,OA=10,∠AOB=36°.若將此扇形繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得一新扇形A′O′B,其中A點(diǎn)在O′B上,則點(diǎn)O的運(yùn)動(dòng)路徑長(zhǎng)為
 
cm.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(湖南益陽(yáng)卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分線BE交AC于E.

(1)求證:AE=BC;

(2)如圖(2),過(guò)點(diǎn)E作EF∥BC交AB于F,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角α(0°<α<144°)得到△AE′F′,連結(jié)CE′,BF′,求證:CE′=BF′;

(3)在(2)的旋轉(zhuǎn)過(guò)程中是否存在CE′∥AB?若存在,求出相應(yīng)的旋轉(zhuǎn)角α;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案