【題目】如圖,在⊙O中,弦BC垂直于半徑OA,垂足為ED是優(yōu)弧BC上一點,連結BD,ADOC,∠ADB30°.

(1)求∠AOC的度數(shù);

(2)若弦BC6 cm,求圖中劣弧BC的長.

【答案】160°;(2π cm

【解析】

1)由在⊙O中,弦BC垂直于半徑OA,根據(jù)垂徑定理可得=,則可求得∠AOC的度數(shù);

2)首先連接OB,由弦BC=6cm,可求得半徑的長,繼而求得圖中劣弧的長.

解:(1)如圖,連結OB.

∵弦BC垂直于半徑OA,

BECE=,

又∵∠ADB30°,

∴∠AOC=∠AOB2ADB60°

(2)BC6,

CEBC3.

∵在RtOCE中,∠AOC60°,

∴∠OCE30°,

OEOC.

OE2CE2OC2,

32OC2

∴解得:OC.

=,

∴∠BOC2AOC120°

的長=(cm)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,∠DAB90°,點EBC的延長線上,且∠CED=∠CAB

1)求證:DE⊙O的切線.

2)若ACDE,當AB8,DC4時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小組在“用頻率估計概率”的實驗中,統(tǒng)計了某種頻率結果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計圖,那么符合這一結果的實驗最有可能的是( 。

A. 擲一枚質地均勻的硬幣,落地時結果是“正面向上”

B. 擲一個質地均勻的正六面體骰子,落地時朝上的面點數(shù)是6

C. 在“石頭剪刀、和”的游戲中,小明隨機出的是“剪刀”

D. 袋子中有1個紅球和2個黃球,只有顏色上的區(qū)別,從中隨機取出一個球是黃球

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABO的直徑,直線CDO相切于點C,AC平分DAB

1)求證:ADDC;

2)若AD2,AC,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞.某網(wǎng)店專售一款休閑褲,其成本為每條40元,當售價為每條80元時,每月可銷售100條.為了吸引更多顧客,該網(wǎng)店采取降價措施.據(jù)市場調查反映:銷售單價每降1元,則每月可多銷售5條.設每條褲子的售價為(為正整數(shù)),每月的銷售量為條.

(1)直接寫出的函數(shù)關系式;

(2)設該網(wǎng)店每月獲得的利潤為元,當銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?

(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學生.為了保證捐款后每月利潤不低于4220元,且讓消費者得到最大的實惠,該如何確定休閑褲的銷售單價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形中,,則菱形的面積是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知拋物線yx24x+2.

1)此拋物線與y軸的交點坐標是   ,頂點坐標是   

2)在坐標系中利用描點法畫出此拋物線.

x

y

3)結合圖象回答:若點A6,t)和點Bmn)都在拋物線yx24x+2上,且nt,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲車從地出發(fā)勻速駛向地,到達地后,立即按原路原速返回地;乙車從地出發(fā)沿相同的路線勻速駛向地,出發(fā)小時后,乙車因故障在途中停車小時,然后繼續(xù)按原速駛向地,乙車在行駛過程中的速度是千米/時,甲車比乙車早小時到達地,兩車距各自出發(fā)地的路程千米與甲車行駛時間小時之間的函數(shù)關系式如圖所示,請結合圖象信息解答下列問題:

1)寫出甲車行駛的速度,并直接寫出圖中括號內正確的數(shù)

2)求甲車從地返回地的過程中,的函數(shù)關系式(不需要寫出自變量x的取值范圍)

3)直接寫出乙車出發(fā)多少小時,兩車恰好相距千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。

查看答案和解析>>

同步練習冊答案