小明同學(xué)受《烏鴉喝水》故事的啟發(fā),利用量筒和完全相同的若干個(gè)小球進(jìn)行了如下操作(量筒是圓柱體,高為49cm,桶內(nèi)水高30cm(如圖1)):

若將三個(gè)小球放入量筒中,水高如圖2所示,則放入小球后量筒中水面的高度y(cm)與小球個(gè)數(shù)x(個(gè))之間的一次函數(shù)表達(dá)式為______(不要求寫出自變量的取值范圍);要使量筒有水溢出(如圖3),則至少要放入的小球個(gè)數(shù)為______.
由圖可知,放入3個(gè)小球后水面上升高度為36-30=6cm,
所以,加入一個(gè)小球水面上升的高度為6÷3=2cm,
故放入小球后量筒中水面的高度y(cm)與小球個(gè)數(shù)x(個(gè))之間的一次函數(shù)表達(dá)式為y=2x+30;
要使量筒有水溢出,則y=2x+30≥49,
解得x≥9.5,
∵小球的個(gè)數(shù)是正整數(shù),
∴x最小取10,
即至少要放入的小球個(gè)數(shù)為10個(gè).
故答案為:y=2x+30;10個(gè).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

百舸競渡,激情飛揚(yáng).為紀(jì)念愛國詩人屈原,邵陽市在資江河隆重舉行了“海洋明珠杯”龍舟賽.圖(十二)是甲、乙兩支龍舟隊(duì)在比賽時(shí)的路程s(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系圖象,請你根據(jù)圖象回答下列問題:
(1)1.8分鐘時(shí),哪支龍舟隊(duì)處于領(lǐng)先地位?
(2)在這次龍舟比賽中,哪支龍舟隊(duì)先到達(dá)終點(diǎn)?
(3)比賽開始多少時(shí)間后,先到達(dá)終點(diǎn)的龍舟隊(duì)就開始領(lǐng)先?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如示意圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A是x軸的負(fù)半軸上一點(diǎn),以AO為直徑的⊙P經(jīng)過點(diǎn)C(-8,4).點(diǎn)E(m,n)在⊙P上,且-10<m≤-5,n<0,CE與x軸相交于點(diǎn)M,過C點(diǎn)作直線CN交x軸于點(diǎn)N,交⊙P于點(diǎn)F,使得△CMN是以MN為底的等腰三角形,經(jīng)過E、F兩點(diǎn)的直線與x軸相交于點(diǎn)Q.
(1)求出點(diǎn)A的坐標(biāo);
(2)當(dāng)m=-5時(shí),求圖象經(jīng)過E、Q兩點(diǎn)的一次函數(shù)的解析式;
(3)當(dāng)點(diǎn)E(m,n)在⊙P上運(yùn)動(dòng)時(shí),猜想∠OQE的大小會(huì)發(fā)生怎樣的變化?請對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)o=k著+b(k≠七)的圖象經(jīng)過A(圖,-w)和B(-2,4);
(w)求這個(gè)函數(shù)的解析式;
(2)求該函數(shù)圖象與o軸的交點(diǎn)C和與著軸的交點(diǎn)D的坐標(biāo);
(圖)求△OCD的面積(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線y=-x+2與x軸、y軸分別相交于點(diǎn)C、D,一個(gè)含45°角的直角三角板的銳角頂點(diǎn)A在線段CD上滑動(dòng),滑動(dòng)過程中三角板的斜邊始終經(jīng)過坐標(biāo)原點(diǎn),∠A的另一邊與x軸的正半軸相交于點(diǎn)B.
(1)試探索△AOB能否為等腰三角形?若能,請求出點(diǎn)B的坐標(biāo);若不能,請說明理由.
(2)如圖2,若將題中“直線y=-x+2”、“∠A的另一邊與x軸的正半軸相交于點(diǎn)B”分別改為:“直線y=-x+t(t>0)”、“∠A的另一邊與x軸的負(fù)半軸相交于點(diǎn)B”(如圖2),其他條件保持不變,請?zhí)剿鳎?)中的問題(只考慮點(diǎn)A在線段CD的延長線上且不包括點(diǎn)D時(shí)的情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線l:y=-2x-8分別與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P.
(1)連接PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說明理由;
(2)當(dāng)k為何值時(shí),⊙P與直線l相切;
(3)當(dāng)k為何值時(shí),以⊙P與直線l的兩個(gè)交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l的解析式為y=-x+4,它與x軸、y軸分別相交于A、B兩點(diǎn),平行于直線l的直線m從原點(diǎn)O出發(fā),沿x軸的正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),它與x軸、y軸分別相交于M、N兩點(diǎn),運(yùn)動(dòng)時(shí)間為t秒(0<t≤4)
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)用含t的代數(shù)式表示△MON的面積S1;
(3)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S2
①當(dāng)2<t≤4時(shí),試探究S2與之間的函數(shù)關(guān)系;
②在直線m的運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),S2為△OAB的面積的
5
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

探究與應(yīng)用:在學(xué)習(xí)幾何時(shí),我們可以通過分離和構(gòu)造基本圖形,將幾何“模塊”化.例如在相似三角形中,K字形是非常重要的基本圖形,可以建立如下的“模塊”(如圖①):
(1)請就圖①證明上述“模塊”的合理性.已知:∠A=∠D=∠BCE=90°,求證:△ABC△DCE;
(2)請直接利用上述“模塊”的結(jié)論解決下面兩個(gè)問題:
①如圖②,已知點(diǎn)A(-2,1),點(diǎn)B在直線y=-2x+3上運(yùn)動(dòng),若∠AOB=90°,求此時(shí)點(diǎn)B的坐標(biāo);
②如圖③,過點(diǎn)A(-2,1)作x軸與y軸的平行線,交直線y=-2x+3于點(diǎn)C、D,求點(diǎn)A關(guān)于直線CD的對稱點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若一次函數(shù)y=kx-4的圖象經(jīng)過點(diǎn)(-2,4),則k等于( 。
A.-4B.4C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案