【題目】兩條寬度都為1的紙條,交叉重疊放在一起,且它們的交角為α,則它們重疊部分(圖中陰影部分)的面積為( )
A.
B.
C.sinα
D.1
【答案】A
【解析】解:如右圖所示:
過A作AE⊥BC,AF⊥CD于F,垂足為E,F,
∴∠AEB=∠AFD=90°,
∵AD∥CB,AB∥CD,
∴四邊形ABCD是平行四邊形,
∵紙條寬度都為1,
∴AE=AF=1,
在△ABE和△ADF中 ,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四邊形ABCD是菱形.
∴BC=AB,
∵ =sinα,
∴BC=AB= ,
∴重疊部分(圖中陰影部分)的面積為:BC×AE=1× = ,
所以答案是:A.
【考點精析】利用解直角三角形對題目進行判斷即可得到答案,需要熟知解直角三角形的依據:①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數的定義.(注意:盡量避免使用中間數據和除法).
科目:初中數學 來源: 題型:
【題目】中國數學史上最先完成勾股定理證明的數學家是公元3世紀三國時期的趙爽,他為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1).圖2由“弦圖”變化得到,它是由八個全等的直角三角形拼接而成.將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為S1,S2,S3,若S1+S2+S3=18,則正方形EFGH的面積為( )
A. B. 5C. 6D. 9
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=60°,BD、CD分別平分∠ABC、∠ACB,M、N、Q分別在DB、DC、BC的延長線上,BE、CE分別平分∠MBC、∠BCN,BF、CF分別平分∠EBC、∠ECQ,則∠F=________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為 時,四邊形AMDN是矩形;②當AM的值為 時,四邊形AMDN是菱形。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由5個大小相同的小正方體拼成的幾何體如圖所示,則下列說法正確的是( )
A.主視圖的面積最小
B.左視圖的面積最小
C.俯視圖的面積最
D.三個視圖的面積相等
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數y=ax2﹣2ax﹣1(a是常數,a≠0),下列結論正確的是( )
A.當a=1時,函數圖象過點(﹣1,1)
B.當a=﹣2時,函數圖象與x軸沒有交點
C.若a>0,則當x≥1時,y隨x的增大而減小
D.若a<0,則當x≤1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5元/噸收費,超出10噸的部分按2元/噸收費,則某戶居民一個月用水8噸,則應繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應繳水費:10×1.5+(13﹣10)×2=21(元).
表是小明家1至4月份用水量和繳納水費情況,根據表格提供的數據,回答:
月份 | 一 | 二 | 三 | 四 |
用水量(噸) | 6 | 7 | 12 | 15 |
水費(元) | 12 | 14 | 28 | 37 |
(1)該市規(guī)定用水量為 噸,規(guī)定用量內的收費標準是 元/噸,超過部分的收費標準是 元/噸.
(2)若小明家五月份用水20噸,則應繳水費 元.
(3)若小明家六月份應繳水費46元,則六月份他們家的用水量是多少噸?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com