【題目】實數(shù)a,b在數(shù)軸上對應(yīng)點的位置如圖所示,化簡|a|+ 的結(jié)果是( )
A.﹣2a+b
B.2a﹣b
C.﹣b
D.b
【答案】A
【解析】解:由圖可知:a<0,a﹣b<0,
則|a|+
=﹣a﹣(a﹣b)
=﹣2a+b.
所以答案是:A.
【考點精析】解答此題的關(guān)鍵在于理解二次根式的性質(zhì)與化簡的相關(guān)知識,掌握1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來,以及對絕對值的理解,了解正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積時,可以得到一個數(shù)學(xué)等式.例如由圖1可以得到.請回答下列問題:
(1)寫出圖2中所表示的數(shù)學(xué)等式是 ;
(2)如圖3,用四塊完全相同的長方形拼成正方形,用不同的方法,計算圖中陰影部分的面積,你能發(fā)現(xiàn)什么?(用含有,的式子表示) ;
(3)通過上述的等量關(guān)系,我們可知: 當(dāng)兩個正數(shù)的和一定時,它們的差的絕對值越小,則積越 (填“ 大”“或“小”);當(dāng)兩個正數(shù)的積一定時,它們的差的絕對值越小,則和越 (填“ 大”或“小”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:在綜合與實踐課上,同學(xué)們以“已知三角形三邊的長度,求三角形面積”為主題開展數(shù)學(xué)活動,小穎想到借助正方形網(wǎng)格解決問題.圖1,圖2都是8×8的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點稱為格點.
操作發(fā)現(xiàn):小穎在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構(gòu)造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C,A,她借助此圖求出了△ABC的面積.
(1)在圖1中,小穎所畫的△ABC的三邊長分別是AB=__________,BC=__________,AC=__________;△ABC的面積為__________.
解決問題:(2)已知△ABC中,AB=,BC=2,AC=5,請你根據(jù)小穎的思路,在圖2的正方形網(wǎng)格中畫出△ABC,并計算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=kx+b的圖象分別交x軸,y軸于A、B兩點,與反比例函數(shù)y2= 的圖象交于C、D兩點,已知點C的坐標(biāo)為(﹣4,﹣1),點D的橫坐標(biāo)為2.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫出當(dāng)x為何值時,y1>y2?
(3)點P是反比例函數(shù)在第一象限的圖象上的點,且點P的橫坐標(biāo)大于2,過點P做x軸的垂線,垂足為點E,當(dāng)△APE的面積為3時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)尺規(guī)作圖:如圖1,請在x軸上作出表示(,0)的點(保留清晰作圖痕跡,不寫作法).
(2)如圖2,已知點A(4,2),點B在x軸上,若∠OAB=90°,試求點B的坐標(biāo);
(3)如圖3,已知點A(4,2),點C在x軸上,若△OAC為等腰三角形,試求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,要使四邊形ABCD為平行四邊形,則應(yīng)添加的條件是______.(添加一個條件即可,不添加其它的點和線).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是⊙O外一點,過點P作⊙O的切線PA,切點為A,連接PO,延長PO交⊙O于點B,若∠P=30°,PA=3 ,則弧AB的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明坐在堤邊A處垂釣,河堤AC與水平面的夾角為30°,AC的長為 米,釣竿AO與水平線的夾角為60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組為測得大廈AB的高度,在大廈前的平地上選擇一點C,測得大廈頂端A的仰角為30°,再向大廈方向前進(jìn)80米,到達(dá)點D處(C,D,B三點在同一直線上),又測得大廈頂端A的仰角為45°,請你計算該大廈的高度.(精確到0.1米,參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com