【題目】圖中的兩個多邊形ABCDEFA1B1C1D1E1F1相似(各字母已按對應關系排列)AD1135°,BE1120°C195°.

(1)求∠F的度數(shù);

(2)如果多邊形ABCDEFA1B1C1D1E1F1的相似比是11.5,且CD15cm,求C1D1的長度.

【答案】 (1)∠F115°;(2)C1D1=22.5cm

【解析】試題分析:(1)、根據(jù)相似多邊形的性質求出∠A、∠B、∠C、∠D、∠E的角度,然后根據(jù)五邊形的內角和定理求出∠F的度數(shù);(2)、相似多邊形對應邊的比值等于相似比,根據(jù)相似比求出線段的長度.

試題解析:(1)∵多邊形ABCDEFA1B1C1D1E1F1相似,AD1135°BE1120°,C195°

∴∠CC195°,DD1135°,EE1120°.

由多邊形內角和定理,得多邊形ABCDEF的內角和為180°×(62)720°,

∴∠F720°(135°120°95°135°120°)115°

(2)∵多邊形ABCDEFA1B1C1D1E1F1的相似比是11.5,且CD15cm

C1D115×1.522.5(cm)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律:觀察下面由※組成的圖案和算式,解答問題:

1+3=22=4

1+3+5=32=9

1+3+5+7=42=16

1+3+5+7+9=52=25

(1)猜想1+3+5+7+9+…+29=   =

(2)猜想1+3+5+7+9+…+(2n﹣1)+(2n+1)= = ;

(3)用上述規(guī)律計算:41+43+45+…+77+79.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】春天到了,鮮花盛開,人們都喜歡用美麗的花朵裝點家庭,北碚花市生意興隆,某花店老板三月份購進一批山茶花、繡球花共1000株,進價均為每株42元,山茶花以每株80元、繡球花以每株64元的價格銷售.

1)若要求三月份的總獲利至少33200元,問該老板至少應購進山茶花多少株?

2)四月份繡球花品種豐富、花型飽滿,在進價不變的情況下,該老板決定調整價格,將山茶花的價格在三月份的基礎上下調a%(降價后售價不低于進價),繡球花的價格上調a%,同時山茶花的銷量較三月份最低利潤時銷量下降了a%,繡球花的銷量較月份最低利潤時銷量上升了40%,結果四月份的銷售額比三月份最低利潤時增加了3520元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在Rt△ABC中,∠C90°,點DAC的中點,且∠A∠CDB90°,過點A、D⊙O,使圓心OAB上,⊙OAB交于點E.

1)求證:直線BD⊙O相切;

2)若ADAE45,BC6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調查,統(tǒng)計整理并繪制了如圖兩幅不完整的統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖提供的信息,解答下列問題:

(1)共抽取___名學生進行問卷調查;

(2)補全條形統(tǒng)計圖,求出扇形統(tǒng)計圖中“籃球”所對應的圓心角的度數(shù);

(3)該校共有2500名學生,請估計全校學生喜歡足球運動的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于點A16),B3n)兩點.

1)求一次函數(shù)的表達式;

2)在y軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°AC6cm,BC8cm.動點M從點B出發(fā),在BA邊上以每秒3cm的速度向定點A運動,同時動點N從點C出發(fā),在CB邊上以每秒2cm的速度向點B運動,運動時間為t,連接MN.

(1)若△BMN與△ABC相似,求t的值;

(2)連接AN,CM,若ANCM,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O分別交AB、BC于點M、N,直線CP是⊙O的切線,且點PAB的延長線上

1若∠P=40°,求∠BCP的度數(shù);

2)若BC=2sinBCP=,求點BAC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

1)如圖,垂直于地面放置的正方形框架ABCD,邊長AB30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .

2)不改變中燈泡的高度,將兩個邊長為30cm的正方形框架按圖擺放,請計算此時橫向影子ABDC的長度和為多少?

3)有n個邊長為a的正方形按圖擺放,測得橫向影子AB,DC的長度和為b,求燈泡離地面的距離.(寫出解題過程,結果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案