【題目】如圖,在RtABC中,∠ACB90°,以點A為圓心,AC為半徑,作A,交AB于點D,交CA的延長線于點E,過點EAB的平行線交A于點F,連接AF,BF,DF

1)求證:△ABC≌△ABF;

2)填空:

當∠CAB   °時,四邊形ADFE為菱形;

的條件下,BC   cm時,四邊形ADFE的面積是6cm2

【答案】1)證明見解析;(260;(36.

【解析】

1)首先利用平行線的性質(zhì)得到∠FAB=CAB,然后利用SAS證得兩三角形全等即可;

2)當∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=CAB=CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形;

3)設(shè)菱形AEFD的邊長為a,易知AEF、AFD都是等邊三角形,列出方程求出a,再在RTACB中,利用勾股定理即可解決問題.

1)證明:∵EFAB,

∴∠E=∠CAB,∠EFA=∠FAB,

∵∠E=∠EFA

∴∠FAB=∠CAB,

ABCABF中,

,

∴△ABC≌△ABF;

2)當∠CAB60°時,四邊形ADFE為菱形,

證明:∵∠CAB60°,

∴∠FAB=∠CAB=∠CAB60°,

EFADAE,

∴四邊形ADFE是菱形,

故答案為60

3)∵四邊形AEFD是菱形,設(shè)邊長為a,∠AEF=∠CAB60°,

∴△AEFAFD都是等邊三角形,

由題意:a26,

a212,

a0,

a2,

ACAE2,

RTACB中,∠ACB90°,AC2,∠CAB60°,

∴∠ABC30°,

AB2AC4,BC6

故答案為6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了慶!傲粌和(jié)”,六年級同學在班會課進行了趣味活動.小舟同學在模板上畫出一個菱形ABCD,將它以點O為中心按順時針方向分別旋轉(zhuǎn)90°,180°,270°后得到如圖所示的圖形,其中∠ABC120°,AB2cm,然后小舟將此圖形制作成一個靶子,那么當我們投飛鏢時命中陰影部分的概率為( 。

A. B. 2C. -1D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個周末,小麗從家去園博園參觀,同時媽媽參觀結(jié)束從園博園回家,小麗剛到園博園就發(fā)現(xiàn)要下雨,于是立即按原路返回,追上媽媽后,兩人一同回家(小麗和媽媽始終在同一條筆直的公路上行走)如圖是兩人離家的距離y()與小麗出發(fā)的時間x()之間的函數(shù)圖象,請根據(jù)圖象信息回答下列問題:

(1)求線段BC的解析式;

(2)求點F的坐標,并說明其實際意義;

(3)與按原速度回家相比,媽媽提前了幾分鐘到家?并直接寫出小麗與媽媽何時相距800米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某手機店銷售一部A型手機比銷售一部B型手機獲得的利潤多50元,銷售相同數(shù)量的A型手機和B型手機獲得的利潤分別為3000元和2000元.

(1)求每部A型手機和B型手機的銷售利潤分別為多少元?

(2)該商店計劃一次購進兩種型號的手機共110部,其中A型手機的進貨量不超過B型手機的2倍.設(shè)購進B型手機n部,這110部手機的銷售總利潤為y元.

①求y關(guān)于n的函數(shù)關(guān)系式;

②該手機店購進A型、B型手機各多少部,才能使銷售總利潤最大?

(3)實際進貨時,廠家對B型手機出廠價下調(diào)m(30<m<100)元,且限定商店最多購進B型手機80臺.若商店保持兩種手機的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使這110部手機銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:

我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.

理解:

(1)如圖1,已知RtABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);

(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.

求證:BD是四邊形ABCD的“相似對角線”;

(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若EFG的面積為2,求FH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某圖書館計劃選購甲、乙兩種圖書.已知甲種圖書每本價格是乙種圖書每本價格的2.5倍,用800元單獨購買甲種圖書比用800元單獨購買乙種圖書要少24本.求:

1)乙種圖書每本價格為多少元?

2)如果該圖書館計劃購買乙種圖書的本數(shù)比購買甲種圖書本數(shù)的2倍多8本,且用于購買甲、乙兩種圖書的總經(jīng)費不超過1060元,那么該圖書館最多可以購買多少本甲種圖書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx3過點A1,0),直線AD交拋物線于點D,點D的橫坐標為﹣2,點P是線段AD上的動點.

1b   ,拋物線的頂點坐標為   ;

2)求直線AD的解析式;

3)過點P的直線垂直于x軸,交拋物線于點Q,連接AQ,DQ,當ADQ的面積等于ABD的面積的一半時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016山西省)我省某蘋果基地銷售優(yōu)質(zhì)蘋果,該基地對需要送貨且購買量在2000kg﹣5000kg(含2000kg5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):

方案A:每千克5.8元,由基地免費送貨.

方案B:每千克5元,客戶需支付運費2000元.

(1)請分別寫出按方案A,方案B購買這種蘋果的應(yīng)付款y(元)與購買量xkg)之間的函數(shù)表達式;

(2)求購買量x在什么范圍時,選用方案A比方案B付款少;

(3)某水果批發(fā)商計劃用20000元,選用這兩種方案中的一種,購買盡可能多的這種蘋果,請直接寫出他應(yīng)選擇哪種方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線)與軸交于、兩點(點在點左側(cè)),與軸交于點,該拋物線的頂點的縱坐標是.

1)求點的坐標;

2)設(shè)直線與直線關(guān)于該拋物線的對稱軸對稱,求直線的表達式;

3)平行于軸的直線與拋物線交于點、,與直線交于點.若,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

同步練習冊答案