【題目】已知:如圖,是的外接圓,且,,是的切線,為切點,割線過圓心,交于另一點,連接.
求證:;
求的半徑及的長.
【答案】(1)證明見解析;(2) DC=23.8.
【解析】
(1)如圖;由AB=AC,可以得到∠1=∠2,然后利用弦切角定理就可以證得PA與BC的內(nèi)錯角相等,由此得證;
(2)本題需構(gòu)建直角三角形求解,連接OA,交BC于G,由垂徑定理知:OA垂直平分BC,
在Rt△ABG中,已知了AB、BG的長,根據(jù)勾股定理可求出AG的長,
在Rt△OBG中,用圓的半徑表示出OG的長,然后根據(jù)勾股定理,求出圓的半徑長,進而可求出OG的長,
△BCD中,易證得OG是△BCD的中位線,由此可求出CD的長.
解:∵是的切線,
∴.
又∵,
∴,
∴.
∴.
連接交于點,則;
由可知,,
∴.
∴為的中點,
∵,
∴.
又∵,
∴.
設(shè)的半徑為,則,
在中,
∵,
∴,
∴,;
∵是的直徑,
∴.
又∵,
∴.
∵點是的中點,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,.
(1)如圖1,是邊上兩點,, 求的度數(shù).
(2)點是邊上兩動點(不與重合), 點在點左側(cè),且,點關(guān)于直線的對稱點為,連接.
①依題意將圖2補全.
②小明通過觀察和實驗,提出猜想:在點運動的過程中,始終有為等腰直角三角形,他把這個猜想與同學(xué)們進行交流,通過討論,形成以下證明猜想的思路:要想證明為等腰直角三角形,只需證.
請參考上面的思路,幫助小明證明△APM 為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點C作CE∥AD交△ABC的外接圓O于點E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩同心圓中,大圓的弦交小圓于、兩點,點到的距離等于的一半,且.則大小圓的半徑之比為( )
A. :1 B. 2: C. 10: D. 3:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了方便孩子入學(xué),小王家購買了一套學(xué)區(qū)房,交首付款15萬元,剩余部分向銀行貸款,貸款及貸款利息按月分期還款,每月還款數(shù)相同.計劃每月還款y萬元,x個月還清貸款,若y是x的反比例函數(shù),其圖象如圖所示:
(1)求y與x的函數(shù)解析式;
(2)若小王家計劃180個月(15年)還清貸款,則每月應(yīng)還款多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,A(-1,0)、B(0,-2),頂點C、D在雙曲線(x>0)上,邊AD交y軸于點E,若點E恰好是AD的中點,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C處測得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實驗樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com