精英家教網 > 初中數學 > 題目詳情
如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為( )
A.1
B.1.2
C.1.3
D.1.5
【答案】分析:根據勾股定理的逆定理可以證明∠BAC=90°;根據直角三角形斜邊上的中線等于斜邊的一半,則AM=EF,要求AM的最小值,即求EF的最小值;根據三個角都是直角的四邊形是矩形,得四邊形AEPF是矩形,根據矩形的對角線相等,得EF=AP,則EF的最小值即為AP的最小值,根據垂線段最短,知:AP的最小值即等于直角三角形ABC斜邊上的高.
解答:解:∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2
即∠BAC=90°.
又PE⊥AB于E,PF⊥AC于F,
∴四邊形AEPF是矩形,
∴EF=AP.
∵M是EF的中點,
∴AM=EF=AP.
因為AP的最小值即為直角三角形ABC斜邊上的高,即2.4,
∴AM的最小值是1.2.
故選B.
點評:此題綜合運用了勾股定理的逆定理、矩形的判定及性質、直角三角形的性質.
要能夠把要求的線段的最小值轉換為便于分析其最小值的線段.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案