已知函數(shù)y1=kx-2和y2=-3x+b相交于點(diǎn)A(2,-1)
(1)求k、b的值,在同一坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象.
(2)利用圖象求出:當(dāng)x取何值時(shí)有:①y1<y2;②y1≥y2
(3)利用圖象求出:當(dāng)x取何值時(shí)有:①y1<0且y2<0;②y1>0且y2<0.
分析:本題要求利用圖象求解各問(wèn)題,先畫函數(shù)圖象,根據(jù)圖象觀察,得出結(jié)論.
解答:解:(1)將A點(diǎn)坐標(biāo)代入y
1,得:2k-2=-1,即k=
;
將A點(diǎn)坐標(biāo)代入y
2,得:-6+b=-1,即b=5;
∴兩個(gè)函數(shù)的解析式分別為:y
1=
x-2、y
2=-3x+5;如圖;
(2)從圖象可以看出:①當(dāng)x<2時(shí),y
1<y
2;②當(dāng)x≥2時(shí),
y
1≥y
2;
(3)∵直線y
1=
x-2與x軸的交點(diǎn)為(4,0),
直線y
2=-3x+5與x軸的交點(diǎn)為(
,0),
∴從圖象可知:
①當(dāng)x<4時(shí),y
1<0;當(dāng)x>
時(shí),y
2<0;
所以當(dāng)
<x<4時(shí),y
1<0且y
2<0.
②當(dāng)x>4時(shí),y
1>0;當(dāng)x>
時(shí),y
2<0;
∴當(dāng)x>4時(shí)y
1>0且y
2<0.
點(diǎn)評(píng):本題考查了一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用.解決此類問(wèn)題關(guān)鍵是仔細(xì)觀察圖形,注意幾個(gè)關(guān)鍵點(diǎn)(交點(diǎn)、原點(diǎn)等),做到數(shù)形結(jié)合.