在△ABC中,AB=AC,AB的垂直平分線DE與AC所在的直線相交于點(diǎn)E,垂足為D,連接BE.已知AE=5,tan∠AED=,則BE+CE=   
【答案】分析:本題有兩種情形,需要分類討論.
首先根據(jù)題意畫出圖形,由線段垂直平分線的性質(zhì),即可求得AE=BE,又由三角函數(shù)的性質(zhì),求得AD的長,繼而求得答案.
解答:解:①若∠BAC為銳角,如答圖1所示:

∵AB的垂直平分線是DE,
∴AE=BE,ED⊥AB,AD=AB,
∵AE=5,tan∠AED=
∴sin∠AED=,
∴AD=AE•sin∠AED=3,
∴AB=6,
∴BE+CE=AE+CE=AC=AB=6;
②若∠BAC為鈍角,如答圖2所示:

同理可求得:BE+CE=16.
故答案為:6或16.
點(diǎn)評:本題考查了線段垂直平分線、等腰三角形、解直角三角形等知識點(diǎn),著重考查了分類討論的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案