如圖,平行四邊形ABCD中,F(xiàn)是CD上一點,BF交AD的延長線于G,則圖中的相似三角形對數(shù)共有( )

A.8對;B.6對;C.4對;D.2對.

B.

解析試題分析:根據(jù)平行四邊形的性質(zhì),得到平行四邊形的對邊平行,即AD∥BC,AB∥CD;再根據(jù)相似三角形的判定方法:平行于三角形一邊的直線與三角形另兩邊或另兩邊的延長線所構(gòu)成的三角形相似,進而得出答案.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴△BEC∽△GEA,△ABE∽△CEF,△GDF∽△GAB,△DGF∽△BCF,
∴△GAB∽△BCF,
還有△ABC≌△CDA(是特殊相似),
∴共有6對.
故選:C.
考點:1.相似三角形的判定;2.平行四邊形的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知∠AOB, OE平分∠AOC, OF平分∠BOC.

(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數(shù);
(2)猜想∠EOF與∠AOB的數(shù)量關(guān)系;
(3)若∠AOB+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AD>AB.

(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴ ∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.本試卷錫     
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

對一個圖形進行放縮時,下列說法中正確的是( )

A.圖形中線段的長度與角的大小都會改變;
B.圖形中線段的長度與角的大小都保持不變;
C.圖形中線段的長度保持不變、角的大小可以改變;
D.圖形中線段的長度可以改變、角的大小保持不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,△ABC經(jīng)過位似變換得到△DEF,點O是位似中心且OA=AD,則△ABC與△DEF的面積比是(  )

A.1:6 B.1:5 C.1:4 D.1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,邊長為6的大正方形中有兩個小正方形,若兩個小正方形的面積分別為,則的值為

A.16 B.17 C.18 D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

在某次活動課中,甲、乙兩個學(xué)習(xí)小組于同一時刻在陽光下對校園中一些物體進行了測量.下面是他們通過測量得到的一些信息:如圖1,甲組測得一根直立于平地,長為80cm的竹竿的影長為60cm.如圖2,乙組測得學(xué)校旗桿的影長為900cm.則旗桿的長為(   )

A.900cmB.1000cmC.1100cmD.1200cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,△ABC的三個頂點都在⊙O上,∠BAC的平分線交BC于點D,交⊙O于點E,則與△ABD相似的三角形有(    )

A.3個 B.2個 C.1個 D.0個

查看答案和解析>>

同步練習(xí)冊答案