如圖,已知AD∥BC,∠1+∠D=180°,那么AB∥CD嗎?為什么?
分析:要說(shuō)明AB∥CD,根據(jù)圖形,必須證明一組同位角相等,即要證明∠1=∠C.
解答:解:AB∥CD.理由:
∵AD∥BC,
∴∠C+∠D=180°,
∵∠1+∠D=180°,
∴∠1=∠C,
∴AB∥CD.
點(diǎn)評(píng):本題考查平行線(xiàn)的判定與性質(zhì),正確識(shí)別“三線(xiàn)八角”中的同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角是正確答題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD=BC.EC⊥AB.DF⊥AB,C.D為垂足,要使△AFD≌△BEC,還需添加一個(gè)條件.若以“ASA”為依據(jù),則添加的條件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD=BC,AC=BD,∠DAC與∠CBD有什么關(guān)系?說(shuō)說(shuō)你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD∥BC,AD平分∠CAE,試說(shuō)明△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠C=
56°
56°

查看答案和解析>>

同步練習(xí)冊(cè)答案