如圖,Rt△ABC中∠C=90°、∠A=30°,在AC邊上取點(diǎn)O畫圓使⊙O經(jīng)過A、B兩點(diǎn),
(1)求證:以O(shè)為圓心,以O(shè)C為半徑的圓與AB相切.
(2)下列結(jié)論正確的序號(hào)是______.(少選酌情給分,多選、錯(cuò)均不給分)
①AO=2CO;
②AO=BC;
③延長(zhǎng)BC交⊙O與D,則A、B、D是⊙O的三等分點(diǎn).
④圖中陰影面積為:(
1
3
π+
3
8
)•OA2

(1)證明:連接OB,
∴OA=OB,
∴∠A=∠ABO,
∵∠C=90°,∠A=30°,
∴∠ABC=60°,
∴∠OBC=30°,
∴∠ABO=∠OBC=30°,
∴點(diǎn)O在∠ABC的角平分線上,
∴點(diǎn)O到直線AB的距離等于OC的長(zhǎng),
即以O(shè)為圓心,以O(shè)C為半徑的圓與AB相切;

(2)連接OB,∴OA=OB,
∴∠A=∠ABO,
∵∠C=90°,∠A=30°,
∴∠ABC=60°,
∴∠OBC=30°,
∴OC=
1
2
OB=
1
2
OA,
即OA=2OC,
故①正確;
∵cos∠OBC=
BC
OB
,
∴BC=
3
2
OB,
即BC=
3
2
OA,
故②錯(cuò)誤;
延長(zhǎng)BC交⊙O于D,
∵AC⊥BD,
∴AD=AB,
∴△ABD為等邊三角形,
AD
=
AB
=
BD
,
∴點(diǎn)A、B、D將⊙O的三等分.
故③正確;
連接OD,則陰影部分的面積=直角三角形ODC的面積+扇形AOD的面積=(
1
3
π+
3
8
)•OA2
,
故④正確;
故答案為①③④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ABC中,∠ACB=90°,BD是⊙O的直徑,弦DE與AC交于點(diǎn)E,且BD=BF.
(1)求證:AC是⊙O的切線;
(2)若BC=6,AD=4,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,AD平分∠BAC交⊙O于點(diǎn)D,DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,BF⊥AB交AD的延長(zhǎng)線于點(diǎn)F,
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點(diǎn)O,OP=10cm,射線PN與⊙O相切于點(diǎn)Q.A,B兩點(diǎn)同時(shí)從點(diǎn)P出發(fā),點(diǎn)A以5cm/s的速度沿射線PM方向運(yùn)動(dòng),點(diǎn)B以4cm/s的速度沿射線PN方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)求PQ的長(zhǎng);
(2)當(dāng)t為何值時(shí),直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在Rt△ABC中,BC=9,CA=12,∠ABC的平分線BD交AC與點(diǎn)D,DE⊥DB交AB于點(diǎn)E.
(1)設(shè)⊙O是△BDE的外接圓,求證:AC是⊙O的切線;
(2)設(shè)⊙O交BC于點(diǎn)F,連接EF,求
EF
AC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PB為⊙O的切線,B為切點(diǎn),連PO交⊙O于點(diǎn)A,PA=2,PO=5,則PB的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,直徑AB左側(cè)的半圓上有一點(diǎn)動(dòng)點(diǎn)E(不與點(diǎn)A、B重合),連結(jié)EB、ED.
(1)如果∠CBD=∠E,求證:BC是⊙O的切線;
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△EDB≌△ABD,并給予證明;
(3)若tanE=
3
3
,BC=
4
3
3
,求陰影部分的面積.(計(jì)算結(jié)果精確到0.1)
(參考數(shù)值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,菱形ABCD的頂點(diǎn)A、B在x軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)D在y軸的正半軸上,∠BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求線段AD所在直線的函數(shù)表達(dá)式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按照A?D?C?B?A的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為t秒、求t為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線AC相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的兩條切線,A、B是切點(diǎn),連接AB,直線PO交AB于M.請(qǐng)你根據(jù)圓的對(duì)稱性,寫出△PAB的三個(gè)正確的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案