【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是 .
科目:初中數學 來源: 題型:
【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠AOB=60°,點B坐標為(2,0),線段OA的長為6.將△AOB繞點O逆時針旋轉60°后,點A落在點C處,點B落在點D處.
(1)請在圖中畫出△COD;
(2)求點A旋轉過程中所經過的路程(精確到0.1).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠分發(fā)年終獎金,具體金額和人數如下表所示,則下列對這組數據的說法中不正確的是( )
人 數 | 1 | 3 | 5 | 70 | 10 | 8 | 3 |
金額(元) | 200000 | 150000 | 80000 | 15000 | 10000 | 8000 | 5000 |
A.極差是195000
B.中位數是15000
C.眾數是15000
D.平均數是15000
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點,以點O為圓心,OB長為半徑作圓,恰好經過點A,并與BC交于點D.
(1)判斷直線CA與⊙O的位置關系,并說明理由;
(2)若AB= ,求圖中陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明有5張寫著不同數字的卡片,請你按要求抽出卡片,完成下列問題:
(1)從中取出2張卡片,使這2張卡片上數字的乘積最大,乘積的最大值是 ;
(2)從中取出2張卡片,使這2張卡片上數字相除的商最小,則商的最小值是 ;
(3)從中取出4張卡片.用學過的計算方法.使計算結果為24,請寫出這個運算式.(至少寫出兩個)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,設點P到原點O的距離為ρ,OP與x軸正方向的交角為a,則用[ρ,a]表示點P的極坐標,例如:點P的坐標為(1,1),則其極坐標為[ ,45°].若點Q的極坐標為[4,120°],則點Q的平面坐標為( )
A.(﹣2,﹣2 )
B.(2,﹣2 )
C.(﹣2 ,﹣2)
D.(﹣4,﹣4 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方上的動點,過點M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)在(2)的條件下,當MN取得最大值時,在拋物線的對稱軸l上是否存在點P,使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com