【題目】如圖所示,∠A0B=420,點(diǎn)P∠A0B內(nèi)一點(diǎn),分別作出P點(diǎn)關(guān)于OA、OB的對(duì)稱點(diǎn)P1,P2,連接P1P2OAM,交OBN,P1P2=15,則△PMN的周長(zhǎng)為________,∠MPN ________.

【答案】15 96°

【解析】

P點(diǎn)關(guān)于OA的對(duì)稱是點(diǎn)P1,P點(diǎn)關(guān)于OB的對(duì)稱點(diǎn)P2故有PMP1M,PNP2N由此即可得到PMN的周長(zhǎng).根據(jù)四邊形內(nèi)角和為360°,可得出∠P1PP2的度數(shù),根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì)可得出∠PNM+∠PMN的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出MPN的度數(shù)

P點(diǎn)關(guān)于OA的對(duì)稱是點(diǎn)P1,P點(diǎn)關(guān)于OB的對(duì)稱點(diǎn)P2,∴PMP1M,PNP2NPP2OB,PP1OA,∴△PMN的周長(zhǎng)為PM+PN+MNMN+P1M+P2NP1P2=15,∠P1PP2=360°-90°-90°-42°=138°,∠P2=∠NPP2,∠P1=∠P1PM,∴∠PNM=2∠P2,∠PMN=2∠P1,∴∠PNM+∠PMN=2∠P1+2∠P2=2(180°-∠P1PP2)=84°,∴∠MPN=180°-(∠PNM+∠PMN)=180°-84°=96°.

故答案為:15,96°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.

(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班有50位學(xué)生,每位學(xué)生都有一個(gè)序號(hào),將50張編有學(xué)生序號(hào)(從1號(hào)到50號(hào))的卡片(除序號(hào)不同外其它均相同)打亂順序重新排列,從中任意抽取1張卡片.
(1)在序號(hào)中,是20的倍數(shù)的有:20,40,能整除20的有:1,2,4,5,10(為了不重復(fù)計(jì)數(shù),20只計(jì)一次),求取到的卡片上序號(hào)是20的倍數(shù)或能整除20的概率;
(2)若規(guī)定:取到的卡片上序號(hào)是k(k是滿足1≤k≤50的整數(shù)),則序號(hào)是k的倍數(shù)或能整除k(不重復(fù)計(jì)數(shù))的學(xué)生能參加某項(xiàng)活動(dòng),這一規(guī)定是否公平?請(qǐng)說(shuō)明理由;
(3)請(qǐng)你設(shè)計(jì)一個(gè)規(guī)定,能公平地選出10位學(xué)生參加某項(xiàng)活動(dòng),并說(shuō)明你的規(guī)定是符合要求的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①, 的邊上的高,且cm,cm,點(diǎn)從點(diǎn)出發(fā),沿線段向終點(diǎn)運(yùn)動(dòng),其速度與時(shí)間的關(guān)系如圖②所示,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(s),的面積為(cm2 ).

(1)在點(diǎn)沿向點(diǎn)運(yùn)動(dòng)的過(guò)程中,它的速度是 cm/s,用含的代數(shù)式表示線段的長(zhǎng)是 cm,變量之間的函數(shù)表達(dá)式為;

(2)當(dāng)時(shí),求的值.當(dāng)每增加1時(shí),求的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=kx與拋物線y= 交于點(diǎn)A(3,6).

(1)求直線y=kx的解析式和線段OA的長(zhǎng)度;
(2)點(diǎn)P為拋物線第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線PM,交x軸于點(diǎn)M(點(diǎn)M、O不重合),交直線OA于點(diǎn)Q,再過(guò)點(diǎn)Q作直線PM的垂線,交y軸于點(diǎn)N.試探究:線段QM與線段QN的長(zhǎng)度之比是否為定值?如果是,求出這個(gè)定值;如果不是,說(shuō)明理由;
(3)如圖2,若點(diǎn)B為拋物線上對(duì)稱軸右側(cè)的點(diǎn),點(diǎn)E在線段OA上(與點(diǎn)O、A不重合),點(diǎn)D(m,0)是x軸正半軸上的動(dòng)點(diǎn),且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時(shí),符合條件的E點(diǎn)的個(gè)數(shù)分別是1個(gè)、2個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B1C1
(2)請(qǐng)寫出點(diǎn)B關(guān)于y軸對(duì)稱的點(diǎn)B2的坐標(biāo) . 若將點(diǎn)B2向下平移h單位,使其落在△A1B1C1內(nèi)部(不包括邊界),直接寫出h的值(寫出滿足的一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)將今年溫州市民最關(guān)注的熱點(diǎn)話題分為消費(fèi)、教育、環(huán)保、反腐及其它共五類.根據(jù)最近一次隨機(jī)調(diào)查的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表如下:
根據(jù)以上信息解答下列問(wèn)題:
(1)本次共調(diào)查人,請(qǐng)?jiān)诖痤}卡上補(bǔ)全條形統(tǒng)計(jì)圖并標(biāo)出相應(yīng)數(shù)據(jù);
(2)若溫州市約有900萬(wàn)人口,請(qǐng)你估計(jì)最關(guān)注教育問(wèn)題的人數(shù)約為多少萬(wàn)人?
(3)在這次調(diào)查中,某單位共有甲、乙、丙、丁四人最關(guān)注教育問(wèn)題,現(xiàn)準(zhǔn)備從這四人中隨機(jī)抽取兩人進(jìn)行座談,求抽取的兩人恰好是甲和乙的概率(列數(shù)狀圖或列表說(shuō)明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填在如圖各正方形中的四個(gè)數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值是

查看答案和解析>>

同步練習(xí)冊(cè)答案