【題目】如圖,在矩形紙片ABCD中,AB=2,AD=3,EAB的中點,FAD邊上的一個動點,將△AEF沿EF所在直線翻折,得到△A′EF,則A′C的最小值是(  )

A. 5 B. 6 C. D. -1

【答案】D

【解析】

如下圖,連接CE,由已知易得BE=AE=1,BC=AD=3,由此在Rt△BCE中易得CE=,由折疊的性質(zhì)可知A′E=AE=1,這樣由三角形三邊間的關(guān)系可知,當A′落在CE上時,A′C最短,此時A′C=.

如下圖連接CE,

EAB的中點,AB=2,

∴BE=AE=1,

在矩形ABCD,∠B=90°,BC=AD=3,

∴CE=,

A′是由點A沿EF折疊得到的

∴A′E=AE=1,

由三角形三邊間的關(guān)系可知:當點A剛好落在CE上時,AC最短,

AC最短=CE-A′E=.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】7張相同的小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好被分割為兩個長方形,面積分別為S1,S2,已知小長方形紙片的長為a,寬為b,且ab

1)當a9,b2,AD30時,請求:

①長方形ABCD的面積;

S2S1的值.

2)當AD30時,請用含a,b的式子表示S2S1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在ABC中,∠B<∠C,AD,AE分別是ABC的高和角平分線,

1)若∠B=30°,∠C=50°.則∠DAE的度數(shù)是 .(直接寫出答案)

2)寫出∠DAE、∠B、∠C的數(shù)量關(guān)系: ,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上兩點、,其中A表示的數(shù)為-2,表示的數(shù)為2,若在數(shù)軸上存在一點,使得,則稱點叫做點、節(jié)點,例如圖1所示,若點表示的數(shù)為0,有,則稱點為點、“4節(jié)點”.

請根據(jù)上述規(guī)定回答下列問題:

1)若點為點、節(jié)點,且點在數(shù)軸上表示的數(shù)為-4,求的值.

2)若點是數(shù)軸上點“5節(jié)點,請你直接寫出點表示的數(shù)為____________

3)若點在數(shù)軸上(不與、重合),滿足、之間的距離是之間距離的一半,且此時點為點、節(jié)點,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標為(﹣2,0),點A的坐標為(﹣6,3),求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對一張矩形紙片ABCD進行折疊,具體操作如下:

第一步:先對折,使ADBC重合,得到折痕MN,展開;

第二步:再一次折疊,使點A落在MN上的點A′處,并使折痕經(jīng)過點B,得到折痕BE,同時,得到線段BA′,EA′,展開,如圖1;

第三步:再沿EA′所在的直線折疊,點B落在AD上的點B′處,得到折痕EF,同時得到線段B′F,展開,如圖2.

求證:(1)∠ABE=30°;

(2)四邊形BFB′E為菱形.

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點E在邊CD上,且CD3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:ABG≌△AFG;BGGC;AGCF;SFGC3.其中正確結(jié)論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCCDE是以C為公共頂點的兩個等腰三角形,且AC=CBCD=CE,連接BDAE相交于點M,連接CM,∠CAB=CDE=50°,則∠BMC=

A. 30°B. 40°C. 50°D. 60°

查看答案和解析>>

同步練習冊答案