如圖:PC、PB是∠ACB、∠ABC的平分線,∠A=40º,∠BPC=(  )

A.∠BPC=70º             B.∠BPC=140º   
C.∠BPC=110º            D.∠BPC=40º
C

試題分析:在中,∠A=40º,則;因為PC、PB是∠ACB、∠ABC的平分線,所以,所以= ,在中,∠BPC=,選C
點評:本題考查平分線,解答本題的重點是掌握平分線的概念和性質(zhì),熟悉三角形內(nèi)角和定理,本題難度一般
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,∠ABC與∠ACB的平分線相交于O,則∠BOC一定(      )
A.大于90°B.等于90°C.小于90°D.小于或等于90°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若直角三角形的兩條直角邊的長分別為,則斜邊長為   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,D是△ABC內(nèi)一點,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點,則四邊形EFGH的周長是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在12×12的正方形網(wǎng)格中,△TAB的頂點分別為T(1,1),A(2,3),B(4,2)。

(1)以點T(1,1)為位似中心,按比例尺(TA′:TA)3:1的位似中心的同側(cè)將TAB放大為△TA′B′,放大后點A,B的對應點分別為A′,B′,畫出△TA′B′,并寫出點A′,B′的坐標;
(2)在(1)中,若C(a,b)為線段AB上任一點,寫出變化后點C的對應點C′的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線a//b,將含有45°角的三角形板ABC的直角頂點C放在直線b上,若∠1=27°,則∠2的度數(shù)為______________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

[問題情境] 勾股定理是一條古老的數(shù)學定理,它有很多證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖利用面積法進行證明,著名數(shù)學家華羅庚曾提出把“數(shù)形關(guān)系”帶到其他星球作為地球人與其他星球“人”進行第一次“談話”的語言。
[定理表述] 請你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述);
                                        
 
[嘗試證明] 以圖(1)中的直角三角形為基礎可以構(gòu)造出以a、b為底,以a+b為高的直角梯形如圖(2)。請你利用圖(2)驗證勾股定理;
[知識拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:
∵BC=a+b,AD=         .
又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,邊AB的垂直平分線分別交BC、AB于點D、E,AE=3cm,△ADC的周長為9cm,則△ABC的周長是             .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC的三個頂點都在5×5的網(wǎng)格(每個小正方形的邊長均為1個單位長度)的格點上,將△ABC繞點B逆時針旋轉(zhuǎn)到△A′BC′的位置,且點A′、C′仍落在格點上,則圖中陰影部分的面積約是   .(π≈3.14,結(jié)果精確到0.1)

查看答案和解析>>

同步練習冊答案