如果直角坐標系下兩個點的橫坐標相同,那么過這兩點的直線( )

A. 平行于x軸     B. 平行于y

C. 經(jīng)過原點       D. 以上都不對

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,長方形OABC中,O為平面直角坐標系的原點,A,C兩點的坐標分別為(精英家教網(wǎng)3,0),(0,5),點B在第一象限內(nèi).
(1)寫出點B的坐標;
(2)若過點C的直線CD交AB邊于點D,且把長方形OABC的周長分為3:1兩部分,求點D的坐標;
(3)如果將(2)中的線段CD向下平移2個單位,得到線段C′D′,試計算四邊形OAD′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長方形OABC中,O為平面直角坐標系的原點,點A、C的坐標分別為A(3,0)、C(0,2),點B在第一象限.
(1)寫出點B的坐標;
(2)若過點C的直線交長方形的OA邊于點D,且把長方形OABC的周長分成2:3的兩部分,求點D的坐標;
(3)如果將(2)中的線段CD向下平移3個單位長度,得到對應(yīng)線段C′D′,在平面直角坐標系中畫出△CD′C′,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標為(-3,0),若將經(jīng)過A、C兩點的直線y=kx+精英家教網(wǎng)b沿y軸向下平移3個單位后恰好經(jīng)過原點,且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達式;
(2)如果P是線段AC上一點,設(shè)△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點P的坐標;
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運動,則在運動過程中是否存在⊙Q與坐標軸相切的情況?若存在,求出圓心Q的坐標;若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運動,則當r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作一個圖形關(guān)于一條直線的軸對稱圖形,再將這個軸對稱圖形沿著與這條直線平行的方向平移,我們把這樣的圖形變換叫做關(guān)于這條直線的滑動對稱變換.在自然界和日常生活中,大量地存在這種圖形變換(如圖1),結(jié)合軸對稱和平移的有關(guān)性質(zhì),解答以下問題:精英家教網(wǎng)
(1)如圖2,在關(guān)于直線l的滑動對稱變換中,試證明:兩個對應(yīng)點A,A′的連線被直線l平分;
(2)若點P是正方形ABCD的邊AD上的一點,點P關(guān)于對角線AC滑動對稱變換的對應(yīng)點P′也在正方形ABCD的邊上,請僅用無刻度的直尺在圖3中畫出P′;
(3)定義:若點M到某條直線的距離為d,將這個點關(guān)于這條直線的對稱點N沿著與這條直線平行的方向平移到點M′的距離為s,稱[d,s]為點M與M′關(guān)于這條直線滑動對稱變換的特征量.如圖4,在平面直角坐標系xOy中,點B是反比例函數(shù)y=
3x
的圖象在第一象限內(nèi)的一個動點,點B關(guān)于y軸的對稱點為C,將點C沿平行于y軸的方向向下平移到點B′.
①若點B(1,3)與B′關(guān)于y軸的滑動對稱變換的特征量為[m,m+4],判斷點B′是否在此函數(shù)的圖象上,為什么?
②已知點B與B′關(guān)于y軸的滑動對稱變換的特征量為[d,s],且不論點B如何運動,點B′也都在此函數(shù)的圖象上,判斷s與d是否存在函數(shù)關(guān)系?如果是,請寫出s關(guān)于d的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案