【題目】小明有5張寫著不同數(shù)的卡片,請(qǐng)你分別按要求抽出卡片,寫出符合要求的算式:

(1)從中取出2張卡片,使這2張卡片上的數(shù)的乘積最大;

(2)從中取出2張卡片,使這2張卡片上的數(shù)相除的商最小;

(3)從中取出2張卡片,使這2張卡片上的數(shù)通過有理數(shù)的運(yùn)算后得到的結(jié)果最大;

(4)從中取出4張卡片,使這4張卡片通過有理數(shù)的運(yùn)算后得到的結(jié)果為24.(寫出一種即可)

【答案】(1)15;(2);(3)625;(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.

【解析】

(1)根據(jù)有理數(shù)的乘法法則即可確定;

(2)根據(jù)有理數(shù)的除法法則即可確定;

(3)根據(jù)組成數(shù)字的數(shù)的性質(zhì)(乘方)即可確定;

(4)根據(jù)有理數(shù)的混合運(yùn)算法則即可確定.

解:(1)(-3)×(-5)=15.

(2)-5÷(+3)=-.

(3)(-5)4=625.

(4)答案不唯一,如[(-3)-(-5)]×(+3)×(+4)=2×12=24.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABCD中,ABC=60°,且AB=BC,MAN=60°.請(qǐng)?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=∠C,AD∥BC.

(1)證明:AD平分∠CAE;

(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BCAF于點(diǎn)C,∠A+∠190°.

1)求證:ABDE;

2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿線段AF運(yùn)動(dòng)到點(diǎn)F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個(gè)角之間具有怎樣的數(shù)量關(guān)系(不考慮點(diǎn)P與點(diǎn)A,DC重合的情況)?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABCD的對(duì)角線ACBD交于點(diǎn)O,AE平分BAD交BC于點(diǎn)E,ADC=600,AB=BC,連接OE下列 結(jié)論:①∠CAD=300 SABCD=ABAC OB=AB OE=BC 成立的個(gè)數(shù)有( )

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,﹣1),B(0,3),點(diǎn)M為第二象限內(nèi)一點(diǎn),且點(diǎn)M的坐標(biāo)為(t,1).

(1)請(qǐng)用含t的式子表示△ABM的面積;

(2)當(dāng)t=﹣2時(shí),在x軸的正半軸上有一點(diǎn)P,使得△BMP的面積與△ABM的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件,使△ABE≌△CDF,則添加的條件不能為(  )

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= (k>0)的圖象上兩點(diǎn)A(x1, y1)和B(x2, y2),且x1x2>0,分別過ABx軸作AA1x軸于A1,BB1x軸于B1,則_________ (填“>”“=”或“<”),若=2,則函數(shù)解析式為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:

方案一:從包裝盒加工廠直接購(gòu)買,購(gòu)買所需的費(fèi)y1與包裝盒數(shù)x滿足如圖1所示的函數(shù)關(guān)系.

方案二:租賃機(jī)器自己加工,所需費(fèi)用y2(包括租賃機(jī)器的費(fèi)用和生產(chǎn)包裝盒的費(fèi)用)與包裝盒數(shù)x滿足如圖2所示的函數(shù)關(guān)系.根據(jù)圖象回答下列問題:

1)方案一中每個(gè)包裝盒的價(jià)格是多少元?

2)方案二中租賃機(jī)器的費(fèi)用是多少元?生產(chǎn)一個(gè)包裝盒的費(fèi)用是多少元?

3)請(qǐng)分別求出y1、y2x的函數(shù)關(guān)系式.

4)如果你是決策者,你認(rèn)為應(yīng)該選擇哪種方案更省錢?并說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案