【題目】如圖,在 △ABC 中,∠C=90°,DB⊥BC 于點(diǎn) ,分別以點(diǎn) D 和點(diǎn) 為圓心,以大于 的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn) E 和點(diǎn) ,作直線 EF,延長(zhǎng) AB 于點(diǎn) ,連接 DG,下面是說(shuō)明 ∠A=∠D 的說(shuō)理過(guò)程,請(qǐng)把下面的說(shuō)理過(guò)程補(bǔ)充完整:
因?yàn)?/span> DB⊥BC(已知),
所以 ∠DBC=90°( ) .
因?yàn)?/span> ∠C=90°(已知),
所以 ∠DBC=∠C(等量代換),
所以 DB∥AC ( ) ,
所以 (兩直線平行,同位角相等);
由作圖法可知:直線 EF 是線段 DB 的 ( ) ,
所以 GD=GB,線段 (上的點(diǎn)到線段兩端點(diǎn)的距離相等),
所以 ( ) ,因?yàn)?/span> ∠A=∠1(已知),
所以 ∠A=∠D(等量代換).
【答案】垂直的定義;內(nèi)錯(cuò)角相等,兩直線平行;∠A;∠1;垂直平分線;垂直平分線;∠1;∠D;等邊對(duì)等角
【解析】先利用平行線的判定方法證明DB∥AC,則根據(jù)平行線的性質(zhì)得到∠A=∠1;由作圖法可知直線EF是線段DB的垂直平分線,則GD=GB,所以∠1=∠D,然后利用等兩代換得到∠A=∠D.
因?yàn)?/span>DB⊥BC(已知)
所以∠DBC=90°(垂直的定義)①
因?yàn)椤?/span>C=90°(已知)
所以∠DBC=∠C(等量代換)
所以DB∥AC(內(nèi)錯(cuò)角相等,兩直線平行)②
所以∠A=∠1③(兩直線平行,同位角相等);
由作圖法可知:直線EF是線段DB的(垂直平分線)④
所以GD=GB(線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等)⑤
所以∠1=∠D(等邊對(duì)等角)⑥,
因?yàn)椤?/span>A=∠1(已知)
所以∠A=∠D(等量代換).
故答案為垂直的定義;內(nèi)錯(cuò)角相等,兩直線平行;∠A,∠1;垂直平分線;垂直平分線;∠1,∠D;等邊對(duì)等角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y= 過(guò)點(diǎn)A(2,4),B(0,3)、題目中的矩形部分是一段因墨水污染而無(wú)法辨認(rèn)的文字.
(1)根據(jù)現(xiàn)有的信息,請(qǐng)求出題中的一次函數(shù)的解析式.
(2)根據(jù)關(guān)系式畫(huà)出這個(gè)函數(shù)圖象.
(3)過(guò)點(diǎn)B能不能畫(huà)出一直線BC將△ABO(O為坐標(biāo)原點(diǎn))分成面積比為1:2的兩部分?如能,可以畫(huà)出幾條,并求出其中一條直線所對(duì)應(yīng)的函數(shù)關(guān)系式,其它的直接寫出函數(shù)關(guān)系式;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是邊長(zhǎng)為4 的等邊△ABC的內(nèi)心,將△OBC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°得到△OB1C1 , B1C1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E,則DE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了切實(shí)關(guān)注、關(guān)愛(ài)貧困家庭學(xué)生,某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了統(tǒng)計(jì),以便國(guó)家精準(zhǔn)扶貧政策有效落實(shí).統(tǒng)計(jì)發(fā)現(xiàn)班上貧困家庭學(xué)生人數(shù)分別有2名、3名、4名、5名、6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)求該校一共有多少個(gè)班?并將條形圖補(bǔ)充完整;
(2)某愛(ài)心人士決定從2名貧困家庭學(xué)生的這些班級(jí)中,任選兩名進(jìn)行幫扶,請(qǐng)用列表法或樹(shù)狀圖的方法,求出被選中的兩名學(xué)生來(lái)自同一班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,下列n(n為正整數(shù))個(gè)關(guān)于x的一元二次方程: ①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,,…
(1)上述一元二次方程的解為①________,②________,③________,④________.
(2)猜想:第n個(gè)方程為________,其解為________.
(3)請(qǐng)你指出這n個(gè)方程的根有什么共同的特點(diǎn)(寫出一條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,AC為對(duì)角線,點(diǎn)E為AC上一點(diǎn),連接EB,ED.
(1)求證:△BEC≌△DEC;
(2)延長(zhǎng)BE交AD于點(diǎn)F,當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個(gè)多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個(gè)正多邊形中的變化情況,解答下列問(wèn)題.
(1)將下面的表格補(bǔ)充完整:
(2)根據(jù)規(guī)律,是否存在一個(gè)正n邊形,使其中的?若存在,直接寫出的值;若不存在,請(qǐng)說(shuō)明理由.
(3)根據(jù)規(guī)律,是否存在一個(gè)正n邊形,使其中的?若存在,直接寫出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 在平面直角坐標(biāo)系中的位置如圖所示.
(1)作關(guān)于點(diǎn)成中心對(duì)稱的 .
(2)將向右平移4個(gè)單位,作出平移后的.
(3)在軸上求作一點(diǎn),使的值最小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求完成下列證明:
已知:如圖,AB∥CD,直線AE交CD于點(diǎn)C,∠BAC+∠CDF=180°.
求證:AE∥DF.
證明: ∵AB∥CD(____________________________) ,
∴∠BAC=∠DCE(__________________________________________________________________________).
∵∠BAC+∠CDF=180°(已知),
∴____________ +∠CDF=180°(____________________________________).
∴AE∥DF(______________________________________________________________________).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com