如圖,已知△ABC中,AB=AC=1,∠ABC=∠ACB=60°,點(diǎn)D是△ABC外一點(diǎn),且BD=DC,∠DBC=∠DCB=30°,又點(diǎn)M、N分別在AB、AC上,∠MDN=60°,小明為探求△AMN的周長(zhǎng),在AC的延長(zhǎng)線上截取了CP=BM,并連接DP,
(1)試說明:MN=NP;
(2)求出△AMN的周長(zhǎng).

解:(1)∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,
∴∠ABD=∠ACD=90°,
在△MBD和△PCD中,

∴△MBD≌△PCD(SAS),
∴MD=PD,∠MDB=∠PDC,
又∵∠DBC=∠DCB=30°,
∴∠BDC=120°,
∴∠MDB+∠MDC=120°,
∴∠PDC+∠MDC=120°,
即∠PDM=120°,
又∵∠MDN=60°,
∴∠PDN=60°,
∴∠MDN=∠PDN=60°,
在△MDN和△PDN中,

∴△MDN≌△PDN(SAS),
∴MN=NP;

(2)△AMN的周長(zhǎng)=AM+MN+AN,
=AM+NP+AN=AM+AP,
=AM+AC+CP=AM+AC+BM,
=AB+AC=1+1=2;
∴△AMN的周長(zhǎng)為2.
分析:(1)易證△MBD≌△PCD(SAS),可得MD=PD,∠MDB=∠PDC,又可得∠PDM=120°,已知∠MDN=60°,所以∠PDN=60°,即∠MDN=∠PDN=60°,所以,通過證明△MDN≌△PDN(SAS),即可得出MN=NP;
(2)由MN=NP,AP=AC+CP,BM=CP,由等量代換,可得△AMN的周長(zhǎng)=AM+MN+AN=AM+AC+BM=AB+AC=1+1=2;
點(diǎn)評(píng):本題主要考查了等邊三角形的性質(zhì)和全等三角形的判定與性質(zhì),考查了學(xué)生的綜合運(yùn)用能力及空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案