【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A.AB=AC
B.BD=CD
C.∠B=∠C
D.∠BDA=∠CDA

【答案】B
【解析】解:A、∵∠1=∠2,AD為公共邊,若AB=AC,則△ABD≌△ACD(SAS);故A不符合題意;

B、∵∠1=∠2,AD為公共邊,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合題意;

C、∵∠1=∠2,AD為公共邊,若∠B=∠C,則△ABD≌△ACD(AAS);故C不符合題意;

D、∵∠1=∠2,AD為公共邊,若∠BDA=∠CDA,則△ABD≌△ACD(ASA);故D不符合題意.

故答案為:B.

由圖知,兩三角形已經(jīng)有一個角,及夾這個角的一條邊對應(yīng)相等,需要全等的話,只需加夾這個角的另一條邊,或任意一對角相等即可,從而一一判斷即可得出結(jié)論。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從下列四個條件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a、b滿足(a+22+|2b6|0,則ab_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解我校初三年級2000名學(xué)生的體重情況,從中抽查了100名學(xué)生的體重進行統(tǒng)計分析,在這個問題中,樣本是( 。

A.2000名學(xué)生的體重B.100

C.100名學(xué)生D.100名學(xué)生的體重

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中;
(1)如圖1,P,Q是BC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.

①依題意將圖2補全;②小明通過觀察、實驗,提出猜想:在點P,Q運動的過程中,始終有PA=PM,小明把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證PA=PM,只需證△APM是等邊三角形.
想法2:在BA上取一點N,使得BN=BP,要證PA=PM,只需證△ANP≌△PCM.……
請你參考上面的想法,幫助小明證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.

(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小麗在計算一組數(shù)據(jù)的方差時,小麗計算的結(jié)果為a,小明把其中每個數(shù)據(jù)都加上2,算出的方差為b,則:(

A.b=aB.b=2aC.b=a2D.b=4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 中,AD是高,E、F分別是ABAC的中點,

(1)AB=10,AC=8,求四邊形AEDF的周長;
(2)EFAD有怎樣的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的標(biāo)價為150元,八折銷售仍盈利20%,則商品進價為( )元.

A.100B.110C.120D.130

查看答案和解析>>

同步練習(xí)冊答案