【題目】如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( 。
A. B. 2 C. 4 D. 3
【答案】B
【解析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進(jìn)而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進(jìn)而得到Rt△ABC中,AB=2.
點C在雙曲線y=上,AC∥y軸,BC∥x軸,
設(shè)C(a,),則B(3a,),A(a,),
∵AC=BC,
∴﹣=3a﹣a,
解得a=1,(負(fù)值已舍去)
∴C(1,1),B(3,1),A(1,3),
∴AC=BC=2,
∴Rt△ABC中,AB=2,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝元旦,某商場在門前的空地上用花盆排列出了如圖所示的圖案,第1個圖案中有10個花盆,第2個圖案中有19個花盆,…,按此規(guī)律排列下去.
(1)第3個圖案中有______個花盆,第4個圖案中有______個花盆;
(2)根據(jù)上述規(guī)律,求出第個圖案中花盆的個數(shù)(用含的代數(shù)式表示);
(3)是否存在恰好由2026個花盆排列出的具有上述規(guī)律的圖案?若存在,說明它是第幾個圖案?若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC
重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A. 3 B. 4
C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等邊三角形△ABC內(nèi)接于⊙O,點D在 上,連接AD、CD、BD,
(1)如圖1,求證:∠ADB=∠BDC=60°;
(2)如圖2,若BD=3CD,求證:AE=2CE;
(3)在(2)的條件下,連接OE,若BE=14,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC 中,兩邊AB、AC的中垂線,分別交BC于E、G.若BC=12,EG=2,則△AEG的周長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD.
(1)求證:∠ABD=∠ACD.
(2)試判斷直線AD與線段BC的關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx(k≠0)經(jīng)過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標(biāo)原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個少年在綠茵場上游戲.小紅從點A出發(fā)沿線段AB運動到點B,小蘭從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人的運動路線如圖1所示,其中ACDB.兩人同時開始運動,直到都停止運動時游戲結(jié)束,其間他們與點C的距離y與時間x(單位:秒)的對應(yīng)關(guān)系如圖2所示.則下列說法正確的是( 。
A. 小紅的運動路程比小蘭的長
B. 兩人分別在1.09秒和7.49秒的時刻相遇
C. 當(dāng)小紅運動到點D的時候,小蘭已經(jīng)經(jīng)過了點D
D. 在4.84秒時,兩人的距離正好等于⊙O的半徑
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com