【題目】圖①是某公交車線路的收支差額y(票價總收入減去運營成本)與乘客量x的函數(shù)圖象.目前這條線路虧損,為了扭虧,有關(guān)部門舉行了提高票價的聽證會.乘客代表認(rèn)為:公交公司應(yīng)節(jié)約能源,改善管理,降低運營成本,以此舉實現(xiàn)扭虧.公交公司認(rèn)為:運營成本難以下降,公司己盡力,提高票價才能扭虧.根據(jù)這兩種意見,可以把圖①分別改畫成圖②和圖③.下列說法正確的是( )
A.點A表示的是公交車公司票價為1元B.點B表示乘客為0人
C.反應(yīng)乘客意見的是②D.反應(yīng)公交公司意見的是②
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,將點翻折到對角線上的點處,折痕交于點.將點翻折到對角線上的點處,折痕交于點.
求證:四邊形為平行四邊形;
若四邊形為菱形,且,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】興趣小組的同學(xué)要測量樹的高度.在陽光下,一名同學(xué)測得一根長為米的竹竿的影長為米,同時另一名同學(xué)測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學(xué)樓的第一級臺階上,測得此影子長為米,一級臺階高為米,如圖所示,若此時落在地面上的影長為米,則樹高為( )
A. 11.5米 B. 11.75米 C. 11.8米 D. 12.25米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,E是DC上一點(點E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點D的對應(yīng)點為D′,點F為線段BC上一點,連接EF,以EF所在的直線為折痕折疊紙片,使點C的對應(yīng)點C′落在直線ED′上,若CF=4時,DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班各推選10名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了10個球,兩個班選手的進(jìn)球數(shù)統(tǒng)計如表,請根據(jù)表中數(shù)據(jù)解答下列問題
進(jìn)球數(shù)/個 | 10 | 9 | 8 | 7 | 6 | 5 |
甲 | 1 | 1 | 1 | 4 | 0 | 3 |
乙 | 0 | 1 | 2 | 5 | 0 | 2 |
(1)分別寫出甲、乙兩班選手進(jìn)球數(shù)的平均數(shù)、中位數(shù)與眾數(shù);
(2)如果要從這兩個班中選出一個班級參加學(xué)校的投籃比賽,爭取奪得總進(jìn)球團(tuán)體的第一名,你認(rèn)為應(yīng)該選擇哪個班?如果要爭取個人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個班?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線BC:,直線BD與x軸交于點A,點B(2,3),點D(0,).
(1)求直線BD的函數(shù)解析式;
(2)在y軸上找一點P,使得△ABC與△ACP的面積相等,求出點P的坐標(biāo);
(3)如圖2,E為線段AC上一點,連結(jié)BE,一動點F從點B出發(fā),沿線段BE以每秒1個單位運動到點E再沿線段EA以每秒個單位運動到A后停止,設(shè)點F在整個運動過程中所用時間為t,求t的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD中,AB=12cm,AD=5cm,E是DC上一點(點E不與D、C重合)連接AE,以AE所在的直線為折痕,折疊紙片,點D的對應(yīng)點為D′,點F為線段BC上一點,連接EF,以EF所在的直線為折痕折疊紙片,使點C的對應(yīng)點C′落在直線ED′上,若CF=4時,DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的邊上的中點,過點的一條直線交于,交的延長線于,交于,我們可以證明成立(不要求考生證明).
如圖,若將圖中的過點的一條直線交于,改為交的延長線于,交的延長線于,改為交于,其它條件不變,則還成立嗎?如果成立,請給出證明;如果不成立,請說出理由;
根據(jù)圖,請你找出、、、四條線段之間的關(guān)系,并給出證明;
如圖,若將圖中的過點的一條直線交于,改為交的反向延長線于,交的延長線于,改為交于,其它條件不變,則得到的結(jié)論是否成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com