【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CB⊥y軸,交y軸負半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點坐標;
(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數.
(3)如圖3,當D點在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則D點在運動過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
【答案】(1) C(5,﹣4);(2)90°;(3)見解析.
【解析】(1)利用非負數的和為零,各項分別為零,求出a,b即可;
(2)用同角的余角相等和角平分線的意義即可;
(3)利用角平分線的意義和互余兩角的關系簡單計算證明即可.
(1)∵(a﹣3)2+|b+4|=0,
∴a﹣3=0,b+4=0,
∴a=3,b=﹣4,
∴A(3,0),B(0,﹣4),
∴OA=3,OB=4,
∵S四邊形AOBC=16.
∴0.5(OA+BC)×OB=16,
∴0.5(3+BC)×4=16,
∴BC=5,
∵C是第四象限一點,CB⊥y軸,
∴C(5,﹣4);
(2)如圖,
延長CA,∵AF是∠CAE的角平分線,
∴∠CAF=0.5∠CAE,
∵∠CAE=∠OAG,
∴∠CAF=0.5∠OAG,
∵AD⊥AC,
∴∠DAO+∠OAG=∠PAD+∠PAG=90°,
∵∠AOD=90°,
∴∠DAO+∠ADO=90°,
∴∠ADO=∠OAG,
∴∠CAF=0.5∠ADO,
∵DP是∠ODA的角平分線,
∴∠ADO=2∠ADP,
∴∠CAF=∠ADP,
∵∠CAF=∠PAG,
∴∠PAG=∠ADP,
∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°
即:∠APD=90°
(3)不變,∠ANM=45°理由:如圖,
∵∠AOD=90°,
∴∠ADO+∠DAO=90°,
∵DM⊥AD,
∴∠ADO+∠BDM=90°,
∴∠DAO=∠BDM,
∵NA是∠OAD的平分線,
∴∠DAN=0.5∠DAO=0.5∠BDM,
∵CB⊥y軸,
∴∠BDM+∠BMD=90°,
∴∠DAN=0.5(90°﹣∠BMD),
∵MN是∠BMD的角平分線,
∴∠DMN=0.5∠BMD,
∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°
在△DAM中,∠ADM=90°,
∴∠DAM+∠DMA=90°,
在△AMN中,
∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,
∴D點在運動過程中,∠N的大小不變,求出其值為45°
科目:初中數學 來源: 題型:
【題目】(背景知識)
數軸是初中數學的一個重要工具,利用數軸可以將數與形完美結合.研究數軸我們發(fā)現有許多重要的規(guī)律:
例如,若數軸上點、點表示的數分別為、,則、兩點之間的距離,線段的中點表示的數為.
(問題情境)
在數軸上,點表示的數為-20,點表示的數為10,動點從點出發(fā)沿數軸正方向運動,同時,動點也從點出發(fā)沿數軸負方向運動,已知運動到4秒鐘時,、兩點相遇,且動點、運動的速度之比是(速度單位:單位長度/秒).
備用圖
(綜合運用)
(1)點的運動速度為______單位長度/秒,點的運動速度為______單位長度/秒;
(2)當時,求運動時間;
(3)若點、在相遇后繼續(xù)以原來的速度在數軸上運動,但運動的方向不限,我們發(fā)現:隨著動點、的運動,線段的中點也隨著運動.問點能否與原點重合?若能,求出從、相遇起經過的運動時間,并直接寫出點的運動方向和運動速度;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合題。
(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.
(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,CD垂直AB于D,P為BC上的任意一點,過P點分別作PE⊥AB,PF⊥CA,垂足分別為E,F.
(1)若P為BC邊中點,則PE,PF,CD三條線段有何數量關系(寫出推理過程)?
(2)若P為線段BC上任意一點,則(1)中關系還成立嗎?
(3)若P為直線BC上任意一點,則PE,PF,CD三條線段間有何數量關系(請直接寫出).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗. 我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整). 請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知:點B、F、C、E在一條直線上,FB=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
供選擇的三個條件(請從其中選擇一個):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個正整數a,b,c成為勾股數,嘉嘉從中隨機抽取一張,求抽到的卡片上的數是勾股數的概率P1;
(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數都是勾股數的概率P2 , 并指出她與嘉嘉抽到勾股數的可能性一樣嗎?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com