精英家教網(wǎng)如圖,直線l1:y=x+1與直線l2:y=-x-
1
2
把平面直角坐標(biāo)系分成四個(gè)部分,點(diǎn)(-1,2)在( 。
A、第一部分B、第二部分
C、第三部分D、第四部分
分析:先求出兩直線的交點(diǎn)坐標(biāo),再把所求點(diǎn)與交點(diǎn)位置相比較即可.
解答:解:設(shè)直線l1與直線l2的交點(diǎn)坐標(biāo)為(x,y),
由題意可得:
y=x+1
y=-x-
1
2
,解得:
x=-
3
4
y=
1
4

∵-1<-
3
4
,將-1代入y=-x-
1
2
,y=
1
2
<2,∴點(diǎn)(-1,2)在第二部分
方法2:將x=-1分別代入y=x+1,y=-x-
1
2
得y1=0,y2=
1
2
,又2>y2>y1,所以在第二部分.
故選B.
點(diǎn)評(píng):本題考查了兩條直線相交或平行問題,難度不大,關(guān)鍵先求出兩直線的交點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,3),則關(guān)于x的不等式x+1≥mx+n的解集為
x≥2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1、l2交于點(diǎn)A,試求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線l1:y=2x+4與l2:y=-x-5在同一平面角坐標(biāo)系中相交于點(diǎn)P,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1的解析表達(dá)式為y=
12
x+1,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過定點(diǎn)A,B,直線l1精英家教網(wǎng)l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點(diǎn)C的另一點(diǎn)P,使得△ADP與△ADC的面積相等,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l1,l2交于點(diǎn)A,直線l2與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l1所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-2x+2.
(1)求點(diǎn)C的坐標(biāo)及直線l2所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
(3)在直線l2上存在一點(diǎn)P,使得PB=PC,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案