【題目】如圖,直線l1∥l2∥l3 , 一等腰直角三角形ABC的三個頂點A,B,C分別在l1 , l2 , l3上,∠ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則 的值為( )

A.
B.
C.
D.

【答案】A
【解析】解:如圖,作BF⊥l3 , AE⊥l3 ,

∵∠ACB=90°,
∴∠BCF+∠ACE=90°,
∵∠BCF+∠CFB=90°,
∴∠ACE=∠CBF,
在△ACE和△CBF中,
,
∴△ACE≌△CBF,
∴CE=BF=3,CF=AE=4,
∵l1與l2的距離為1,l2與l3的距離為3,
∴AG=1,BG=EF=CF+CE=7
∴AB= =5 ,
∵l2∥l3
=
∴DG= CE= ,
∴BD=BG﹣DG=7﹣ = ,
=
故選A.
【考點精析】解答此題的關(guān)鍵在于理解平行線分線段成比例的相關(guān)知識,掌握三條平行線截兩條直線,所得的對應(yīng)線段成比例.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,點在線段的延長線上,連接于點,,點的中點.

)求證:

)若,,,點的中點,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

已知:如圖1,直線ABCD,點EAB、CD之間的一點,連接BE、DE得到∠BED

求證:∠BED =B+D.

1

小冰是這樣做的:

證明:過點EEFAB,則有∠BEF=B

ABCD,EFCD

∴∠FED=D

∴∠BEF +FED =B+D

即∠BED=B+D

請利用材料中的結(jié)論,完成下面的問題:

已知:直線 ABCD,直線MN分別與AB、CD交于點EF

(1)如圖2,BEF和∠EFD的平分線交于點G猜想∠G的度數(shù),并證明你的猜想;

(2)如圖3,EG1EG2為∠BEF內(nèi)滿足∠1=2的兩條線,分別與∠EFD的平分線交于點G1G2求證:∠FG1 E+G2=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,DE、DF是ABC的中位線,連接EF、AD,其交點為O求證:

(1)CDE≌△DBF;

(2)OA=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長相同的小正方形組成的網(wǎng)格,A,B,P,Q四點均在正方形網(wǎng)格的格點上,線段AB,PQ相交于點M,則圖中∠QMB的正切值是( )

A.
B.1
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.

(1)求證:AE=AF;
(2)求證:BE= (AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)所學(xué)知識完成題目:

(1)一個角的余角與補角的和是這個角的補角與余角的差的兩倍,求這個角.

(2)從兩點三十分時開始算起,鐘表上的時針與分針經(jīng)過多久第一次重合?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】郴州市某中學(xué)校團(tuán)委開展關(guān)愛殘疾兒童愛心捐書活動,全校師生踴躍捐贈各類書籍共3000本.為了解各類書籍的分布情況,從中隨機抽取了部分書籍分四類進(jìn)行統(tǒng)計:A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

(1)這次統(tǒng)計共抽取了多少本書籍,扇形統(tǒng)計圖中的m等于多少∠α的度數(shù)是多少?

(2)請將條形統(tǒng)計圖補充完整;

(3)估計全校師生共捐贈了多少本文學(xué)類書籍.

查看答案和解析>>

同步練習(xí)冊答案