已知Rt△ABC,直角邊AC、BC的長(zhǎng)分別為3cm和4cm,以AC邊所在的直線為軸將△ABC旋轉(zhuǎn)一周,則所圍成的幾何體的側(cè)面積是________cm2

20π
分析:易得以AC所在直線為軸旋轉(zhuǎn)一周得到底面半徑為4,母線長(zhǎng)為5的圓錐,圓錐的側(cè)面積=π×底面半徑×母線長(zhǎng),把相關(guān)數(shù)值代入即可求解.
解答:∵Rt△ABC的兩直角邊AC=3cm,BC=4cm,
∴AB==5(cm),
∵所得圓錐的底面半徑為4,母線長(zhǎng)為5,
∴圓錐的側(cè)面展開圖的面積為π×4×5=20π.
故答案為:20π.
點(diǎn)評(píng):此題主要考查了圓錐的有關(guān)計(jì)算,熟記關(guān)于底面半徑和母線長(zhǎng)的圓錐的側(cè)面積公式,得到圓錐的母線長(zhǎng)和底面半徑是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,并按如下方式運(yùn)動(dòng).
運(yùn)動(dòng)一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動(dòng),DE與AC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí)暫停運(yùn)動(dòng);
運(yùn)動(dòng)二:在運(yùn)動(dòng)一的基礎(chǔ)上,如圖3,RT△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn),CA與DF交于點(diǎn)Q,CB與DE交于點(diǎn)P,此時(shí)點(diǎn)Q在DF上勻速運(yùn)動(dòng),速度為
2
cm/s
,當(dāng)QC⊥DF時(shí)暫停旋轉(zhuǎn);
運(yùn)動(dòng)三:在運(yùn)動(dòng)二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動(dòng),直到點(diǎn)C與點(diǎn)F重合時(shí)為止.
設(shè)運(yùn)動(dòng)時(shí)間為t(s),中間的暫停不計(jì)時(shí),
解答下列問題
(1)在RT△ABC從運(yùn)動(dòng)一到最后運(yùn)動(dòng)三結(jié)束時(shí),整個(gè)過程共耗時(shí)
 
s;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點(diǎn),且GF∥BC,AF=2,BG=4.
(1)求梯形BCFG的面積;
(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合為止,如圖②.
①若某時(shí)段運(yùn)動(dòng)后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動(dòng)路程BD的長(zhǎng),并求此時(shí)G'B2的值;
②設(shè)運(yùn)動(dòng)中BD的長(zhǎng)度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東青島市八年級(jí)下學(xué)期期末考試數(shù)學(xué)卷(帶解析) 題型:解答題

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點(diǎn),且GF∥BC,AF=2,BG=4。

(1)求梯形BCFG的面積;
(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合為止,如圖②.
①若某時(shí)段運(yùn)動(dòng)后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動(dòng)路程BD的長(zhǎng),并求此時(shí)的值;
②設(shè)運(yùn)動(dòng)中BD的長(zhǎng)度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆山東青島市八年級(jí)下學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點(diǎn),且GF∥BC,AF=2,BG=4。

(1)求梯形BCFG的面積;

(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合為止,如圖②.

 ①若某時(shí)段運(yùn)動(dòng)后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動(dòng)路程BD的長(zhǎng),并求此時(shí)的值;

②設(shè)運(yùn)動(dòng)中BD的長(zhǎng)度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案