如圖,雙曲線y=
k
x
(k≠0)過第二象限內(nèi)的點(diǎn)A,AB⊥x軸于B,OB=2,若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過雙曲線上另一點(diǎn)C(4,-
3
2
).
(1)求雙曲線的解析式和直線AC的解析式.
(2)求△AOC的面積.
(3)根據(jù)圖象直接寫出
k
x
>ax+b的x的取值范圍.
考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題
專題:
分析:(1)先把點(diǎn)C代入y=
k
x
即可得出k的值,進(jìn)而得出反比例函數(shù)的解析式;由OB=2,得出點(diǎn)A的坐標(biāo),把A、C兩點(diǎn)的坐標(biāo)代入直線y=ax+b即可得出a、b的值,進(jìn)而得出直線的解析式;
(2)由直線AC的解析式得出M點(diǎn)的坐標(biāo),根據(jù)S△AOC=S△AOM+S△COM即可得出結(jié)論;
(3)由A,C兩點(diǎn)的坐標(biāo)可直接得出不等式的解集.
解答:解(1)把C(4,
3
2
)代入得y=-
6
x
,
∵OB=2,
∴A的橫坐標(biāo)為-2,
∴A(-2,3),
把A(-2,3)和C(4,-
3
2
)代入y=ax+b
得y=-
3
4
x+
3
2
,
(2)令-
3
4
x+
3
2
=0,
∴x=2,
∴OM=2,
∴S△AOC=S△AOM+S△COM=
9
2

(3)由圖象得,不等式
k
x
>ax+b的x的取值范圍-2<x<0,或x>4.
點(diǎn)評:本題考查的是反比例函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)的解析式及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),根據(jù)題意得出A、C的坐標(biāo)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若27a3nb3m與-5b6a3是同類項(xiàng),則m+n=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,DC⊥BC,AD=2,CD=4,tanB=
4
3
.點(diǎn)P在AB上,PM⊥BC于點(diǎn)M,PN⊥CD于點(diǎn)N,若點(diǎn)P從點(diǎn)B開始沿BA向點(diǎn)A運(yùn)動(dòng),
(1)求AB的長度;
(2)設(shè)BP=x,用含x的代數(shù)式表示矩形CMPN的面積S.
(3)當(dāng)點(diǎn)P移動(dòng)到何位置時(shí),矩形CMPN的面積S取最大值,并求最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(圖1),后人稱其為“趙爽弦圖”,由弦圖變化得到圖2,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3.若S1+S2+S3=12,則S2的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角坐標(biāo)平面上的△ABC,AC=CB,∠ACB=90°,且A(-1,0),B(m,n),C(3,0).若拋物線y=ax2+bx-3經(jīng)過A、C兩點(diǎn).
(1)求a、b的值;
(2)將拋物線向上平移若干個(gè)單位得到的新拋物線恰好經(jīng)過點(diǎn)B,求新拋物線的解析式;
(3)設(shè)(2)中的新拋物的頂點(diǎn)P點(diǎn),Q為新拋物線上P點(diǎn)至B點(diǎn)之間的一點(diǎn),以點(diǎn)Q為圓心畫圖,當(dāng)⊙Q與x軸和直線BC都相切時(shí),聯(lián)結(jié)PQ、BQ,求四邊形ABQP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)有4張桌子,用第一種擺設(shè)方式,可以坐
 
人;當(dāng)有n張桌子時(shí),用第二種擺設(shè)方式可以坐
 
人(用含有n的代數(shù)式表示).
(2)一天中午,餐廳要接待85位顧客共同就餐,但餐廳中只有20張這樣的長方形桌子可用,且每4張拼成一張大桌子,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果3m表示向北走3m,那么-2m與6m分別表示(  )
A、向北走2m,向南走6m
B、向北走2m,向北走6m
C、向南走2m,向南走6m
D、向南走2m,向北走6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-kx+k-1=0.
(1)求證:當(dāng)k>2時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若二次函數(shù)y=x2-kx+k-1(k>2)的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,且tan∠OAC=4,求該二次函數(shù)的解析式;
(3)已知點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作垂直于x軸的直線交(2)中的二次函數(shù)圖象于點(diǎn)M,交一次函數(shù)y=px+q的圖象于點(diǎn)N.若只有當(dāng)1<m<5時(shí),點(diǎn)M位于點(diǎn)N的下方,求一次函數(shù)y=px+q的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為a的等邊三角形,D是BC邊的中點(diǎn),DE⊥AC于E,則CE的長為( 。
A、
1
4
a
B、
1
3
a
C、
1
2
a
D、a

查看答案和解析>>

同步練習(xí)冊答案