【題目】如圖,在平面直角坐標系中,已知l1∥l2,直線l1經(jīng)過原點O,直線l2對應的函數(shù)表達式為,點A在直線l2上,AB⊥l1,垂足為B,則線段AB的長為(

A. 4 B. 6 C. 8 D.

【答案】D

【解析】

過點OOC垂直于l2交點為C,得出四邊形OCAB是矩形,OC=AB;分別求得l2與兩個坐標軸的交點坐標,l2與兩個坐標軸圍成的直角三角形中利用勾股定理與三角形的面積求得OC即可得出答案

:如圖,

過點OOC垂直于l2交點為C
l1l2, ABl1, OCl2
∴四邊形OCAB是矩形,
OC=AB
∵直線l2與兩個坐標軸的交點坐標分別為D(0,8),E(-6,0)

DE==10
DE×OC=OE×OD
×10×OC=×6×8
解得:OC=
∴AB=
故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為響應珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進污水處理設(shè)備,新設(shè)備每小時處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時間比現(xiàn)在多用10小時.

(1)原來每小時處理污水量是多少m2?

(2)若用新設(shè)備處理污水960m3,需要多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)如圖1,已知AD=BC,AC=BD.求證:△ADB≌△BCA.
(2)如圖2,已知AB是⊙O的一條直徑,延長AB至點C,使AC=3BC,CD與⊙O相切于點D,若CD= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x與雙曲線y= (x>0)交于點A,將直線y= x向下平移個6單位后,與雙曲線y= (x>0)交于點B,與x軸交于點C,則C點的坐標為;若 =2,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B,C三名大學生競選系學生會主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進行了統(tǒng)計,如下表和圖①:

A

B

C

筆試

85

95

90

口試

80

85

(1)請將表格和圖①中的空缺部分補充完整;

(2)競選的最后一個程序是由本系的300名學生進行投票,三位候選人的得票情況如圖②(沒有棄權(quán)票,每名學生只能推薦一人),請計算每人的得票數(shù);

(3)若每票計1分,系里將筆試、口試、得票三項測試得分按4∶3∶3的比確定個人成績,請計算三位候選人的最后成績,并根據(jù)成績判斷誰能當選.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】長陽公園有四棵古樹A,B,C,D (單位:米).

(1)請寫出A,B,C,D四點的坐標;

(2)為了更好地保護古樹,公園決定將如圖所示的四邊形EFGH用圍欄圈起來,劃為保護區(qū),請你計算保護區(qū)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:

因為∠1=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因為AB與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因為∠3=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)(-2)+(-3)+5

(2)×5÷×5

(3)12-7×(-4)+8÷(-2)

(4)-14+(2-5)2-2

(5)2÷(-2)+0÷7-(-8)×(-2)

(6)(-1)5×(-5)÷[(-3)2+2×(-5)].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市中小學生“我的中國夢”讀書活動中,某校對部分學生做了一次主題為“我最喜愛的圖書”的調(diào)查活動,將圖書分為甲、乙、丙、丁四類,學生可根據(jù)自己的愛好任選其中一類.學校根據(jù)調(diào)查情況進行了統(tǒng)計,并繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請你結(jié)合圖中信息,解答下列問題:
(1)本次共調(diào)查了名學生;
(2)被調(diào)查的學生中,最喜愛丁類圖書的有人,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的%;
(3)在最喜愛丙類學生的圖書的學生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學校共有學生1500人,請你估計該校最喜愛丙類圖書的女生和男生分別有多少人.

查看答案和解析>>

同步練習冊答案