【題目】如圖在平面直角坐標(biāo)系中,四邊形OABC是正方形,A的坐標(biāo)是(4,0),p為邊AB上的一點,CPB=60°,沿CP折疊正方形后,B落在平面內(nèi)B’處,B’的坐標(biāo)為(

A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)

【答案】C

【解析】

B′E⊥y軸于EB′F⊥x軸于F,根據(jù)正方形的性質(zhì)OC=BC=4,∠B=90°,由∠BPC=60°∠1=30°,再根據(jù)折疊的性質(zhì)得到∠1=∠2=30°,CB′=CB=4,所以∠3=30°,在Rt△CB′E中,根據(jù)含30度的直角三角形三邊的關(guān)系得到B′E=CB′=2,CE=B′E=2,則OE=4-2,所以B′F=4-2,然后可寫出B′點坐標(biāo).

解:作B′E⊥y軸于EB′F⊥x軸于F,如圖,

四邊形OABC是正方形,點A的坐標(biāo)是(4,0),

∴OC=BC=4,∠B=90°,

∵∠BPC=60°,

∴∠1=30°,

∵△CPB沿CP折疊,使得點B落在B′處,

∴∠1=∠2=30°,CB′=CB=4

∴∠3=30°,

Rt△CB′E中,B′E=CB′=2,CE==2

∴OE=OC-CE=4-2,

∴B′F=OE=4-2,

∴B′點坐標(biāo)為(2,4-2).

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,第一顆彈珠彈出后其速度(米/分鐘)與時間(分鐘)前2分鐘滿足二次函數(shù),后3分鐘滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2/分鐘.

1)求第一顆彈珠的速度(米/分鐘)與時間(分鐘)之間的函數(shù)關(guān)系式;

2)第一顆彈珠彈出1分鐘后,彈出第二顆彈珠,第二顆彈珠的運行情況與第一顆相同,直接寫出第二顆彈珠的速度(米/分鐘)與彈出第一顆彈珠后的時間(分鐘)之間的函數(shù)關(guān)系式;

3)當(dāng)兩顆彈珠同時在軌道上時,第____分鐘末兩顆彈珠的速度相差最大,最大相差______;

4)判斷當(dāng)兩顆彈珠同時在軌道上時,是否存在某時刻速度相同?請說明理由,并指出可以通過解哪個方程求出這一時刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形AEFD中,點CEF上一點,點BFE的延長線上一點,連接CDAB,.

(1)如圖1,求證:

(2)如圖2,連接BD、AC交于點,若,在不添加任何輔助線的情況下,請直接寫出圖2中四個直角三角形,使寫出的每個三角形的面積等于四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=x2xc(2020≤x≤1)的圖象記為L1,最大值為M1;函數(shù)y=x22cx1(1≤x≤2020)的圖象記為L2,最大值為M2L1的右端點為A,L2的左端點為B,L1,L2合起來的圖形記為L

1)當(dāng)c=1時,求M1,M2的值;

2)若把橫、縱坐標(biāo)都是整數(shù)的點稱為美點,當(dāng)點A,B重合時,求L美點的個數(shù);

3)若M1,M2的差為,直接寫出c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團隨機抽取所屬的部分商業(yè)連鎖店進行評估,將抽取的格商業(yè)連鎖店按照評估成績分成了AB、C、D四個等級,并繪制了如圖不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

1)本次評估隨機抽取了  家商業(yè)連鎖店;

2)請補充完整扇形統(tǒng)計圖和條形統(tǒng)計圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);

3)從A、B兩個等級的商業(yè)連鎖店中任選2家介紹營銷經(jīng)驗,請用列表或畫樹狀圖的方法求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在港口A的南偏東37°方向的海面上,有一巡邏艇B,AB相距20海里,這時在巡邏艇的正北方向及港口A的北偏東67°方向上,有一漁船C發(fā)生故障.得知這一情況后,巡邏艇以25海里/小時的速度前往救援,問巡邏艇能否在1小時內(nèi)到達漁船C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°≈cos67°≈,tan67°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,直線MN與⊙O相切于點C,過點BBDMN于點D

1)求證:∠ABC=∠CBD;(2)若BC4,CD4,則⊙O的半徑是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數(shù)圖象如圖所示,下列說法正確的有(

①快車追上慢車需6小時;

②慢車比快車早出發(fā)2小時;

③快車速度為46km/h

④慢車速度為46km/h;

AB兩地相距828km

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工適度取餐,減少浪費該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費情況,從這10個部門中隨機抽取了兩個部門,進行了連續(xù)四周(20個工作日)的調(diào)查,得到這兩個部門每天午餐浪費飯菜的重量,以下簡稱每日餐余重量(單位:千克),并對這些數(shù)據(jù)進行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,):

.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8

.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8

. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:

部門

平均數(shù)

中位數(shù)

眾數(shù)

6.4

7.0

6.6

7.2

根據(jù)以上信息,回答下列問題:

1)寫出表中的值;

2)在這兩個部門中,適度取餐,減少浪費做得較好的部門是________(填),理由是____________;

3)結(jié)合這兩個部門每日餐余重量的數(shù)據(jù),估計該公司(10個部門)一年(按240個工作日計算)的餐余總重量.

查看答案和解析>>

同步練習(xí)冊答案