【題目】如圖,矩形ABCD中,AB12,點EAD上的一點,AE6BE的垂直平分線交BC的延長線于點F,連接EFCD于點G.若GCD的中點,則BC的長是__________

【答案】10.5

【解析】

利用ASA定理證明△EDG≌△FCG,從而求得DE=CFEG=GF=,根據(jù)矩形的性質(zhì),設BC=x,DE=x-6DG=6,BF=2x-6,根據(jù)垂直平分線的性質(zhì)求得EG=,然后根據(jù)勾股定理列方程求解即可.

解:在矩形ABCD中,AD=BCAB=CD=12,∠D=DCF=90°

GCD中點,∴DG=CG

又∵∠EGD=FGC

∴△EDG≌△FCG

DE=CF,EG=GF=

BC=x,DE=AD-AE=BC-AE=x-6,DG=CG==6,BF=BC+CF=BC+DE=2x-6,

又∵BE的垂直平分線交BC的延長線于點F

EG=GF=

∴在RtEDG中,

解得:x=10.5

BC的長是10.5

故答案為:10.5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】商場某種商品平均每天可銷售30件,每件盈利50元。為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件。設每件商品降價元。據(jù)此規(guī)律,請回答:

(1)商場日銷售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AB上一點,分別以AC,BC為邊在AB的同側(cè)作等邊△HAC與等邊△DCB,連接DH.

(1)如圖1,當∠DHC=90°時,求的值;

(2)在(1)的條件下,作點C關(guān)于直線DH的對稱點E,連接AE,BE.求證:CE平分∠AEB.

(3)現(xiàn)將圖1中的△DCB繞點C順時針旋轉(zhuǎn)一定角度α(0°<α<90°),如圖2,點C關(guān)于直線DH的對稱點為E,則(2)中的結(jié)論是否還成立,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC6,BD8,M、N分別是BCCD上的動點,P是線段BD上的一個動點,則PMPN的最小值是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC,BDCE是高,BDCE相交于點O.

1)求證:OB=OC;

2)若ABC=55°,求BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是8m,寬是2m,拋物線的最高點到路面的距離為6米.

1)按如圖所示建立平面直角坐標系,求表示該拋物線的函數(shù)表達式;

2)一輛貨運卡車高為4m,寬為2m,如果該隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點D是AB邊上的一點,DM⊥AB,且DM=AC,過點M作ME∥BC交AB于點E,

(1)試說明△ABC與△MED全等;

(2)若∠M=35°,求∠B的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三八婦女節(jié)到來之際,某學校準備讓辦公室的王老師去給女教師們買點糖果作為禮物.王老師預先了解到目前比較受老師們喜愛的,兩種糖果的價格之和為140元,他計劃購買糖果的數(shù)量比糖果的數(shù)量多5盒,但一共不超過60盒,正當王老師去超市買糖果的時候,發(fā)現(xiàn)正打九折銷售,而的價格提高了10%,王老師決定將糖果的購買數(shù)量對調(diào),這樣,實際花費只比原計劃多20元.已知價格和購買數(shù)量均為整數(shù),則王老師原計劃購買糖果的總花費為________元.

查看答案和解析>>

同步練習冊答案