【題目】如圖,AD是∠BAC的平分線,DE平行ABAC于點E,DF平行ACAB于點F,延長FEBC的延長線于點G

求證:

1AGDG;

2)∠GAC=∠B

【答案】(1)詳見解析;(2)詳見解析

【解析】

1)由DEABDFAC,可證得四邊形AEDF是平行四邊形,∠DAF=∠ADE,又由AD是∠BAC的平分線,可證得AEDE,即可證得四邊形AEDF是菱形,則可得EFAD的垂直平分線,繼而證得結論;

2)由AGDG,AEDE,可得∠GAD=∠GDA,∠EAD=∠EDA,繼而證得∠GAC=∠GDE,又由DEAB,可得∠GDC=∠B,繼而證得結論.

證明:(1DEABDFAC,

四邊形AEDF是平行四邊形,DAFADE,

ADBAC的平分線,

∴∠DAFDAE,

∴∠DAEADE

AEDE,

四邊形AEDF是菱形,

EFAD的垂直平分線,

延長FEBC的延長線于點G,

AGDG

2AGDG,AEDE,

∴∠GADGDA,EADEDA,

∵∠GACGADEAD,GDEGDAEDA,

∴∠GACGDE

DEAB,

∴∠GDEB,

∴∠GACB

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經過點A0)和點B1,),與x軸的另一個交點為C

1)求拋物線的函數(shù)表達式;

2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;

3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE

判斷四邊形OAEB的形狀,并說明理由;

FOB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,弦CDAB,垂足為H,連結AC,過上一點E作EGAC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.

(1)求證:ECF∽△GCE;

(2)求證:EG是O的切線;

(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:

售價x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達式;

2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以等邊三角形ABCBC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點FBC的垂線交BC于點G.若AF的長為2,則FG的長為

A. 4 B. C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,以為直徑的圓交于點,過點的⊙的切線交于點,則⊙的半徑是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校7名學生在某次測量體溫(單位:℃)時得到如下數(shù)據:36.3,36.4,36.5,36.736.6,36.5,36.5,對這組數(shù)據描述正確的是( 。

A.眾數(shù)是36.5B.中位數(shù)是36.7

C.平均數(shù)是36.6D.方差是0.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,RtOAB的直角頂點Bx軸的正半軸上,點A在第一象限,反比例函數(shù)yx0)的圖象經過OA的中點C.交AB于點D,連結CD.若ACD的面積是2,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線x軸交于A-1,0),B3,0)兩點,與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖①,若點D是拋物線上一動點,設點D的橫坐標為m0m3),連接CD,BDBC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;

(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,MN為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案