【題目】如圖,AD是∠BAC的平分線,DE平行AB交AC于點E,DF平行AC交AB于點F,延長FE交BC的延長線于點G.
求證:
(1)AG=DG;
(2)∠GAC=∠B.
【答案】(1)詳見解析;(2)詳見解析
【解析】
(1)由DE∥AB,DF∥AC,可證得四邊形AEDF是平行四邊形,∠DAF=∠ADE,又由AD是∠BAC的平分線,可證得AE=DE,即可證得四邊形AEDF是菱形,則可得EF是AD的垂直平分線,繼而證得結論;
(2)由AG=DG,AE=DE,可得∠GAD=∠GDA,∠EAD=∠EDA,繼而證得∠GAC=∠GDE,又由DE∥AB,可得∠GDC=∠B,繼而證得結論.
證明:(1)∵DE∥AB,DF∥AC,
∴四邊形AEDF是平行四邊形,∠DAF=∠ADE,
∵AD是∠BAC的平分線,
∴∠DAF=∠DAE,
∴∠DAE=∠ADE,
∴AE=DE,
∴四邊形AEDF是菱形,
∴EF是AD的垂直平分線,
∵延長FE交BC的延長線于點G,
∴AG=DG;
(2)∵AG=DG,AE=DE,
∴∠GAD=∠GDA,∠EAD=∠EDA,
∵∠GAC=∠GAD﹣∠EAD,∠GDE=∠GDA﹣∠EDA,
∴∠GAC=∠GDE,
∵DE∥AB,
∴∠GDE=∠B,
∴∠GAC=∠B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過點A(,0)和點B(1,),與x軸的另一個交點為C.
(1)求拋物線的函數(shù)表達式;
(2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結AC,過上一點E作EG∥AC交CD的延長線于點G,連結AE交CD于點F,且EG=FG,連結CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)設商品每天的總利潤為W(元),則當售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為
A. 4 B. C. 6 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校7名學生在某次測量體溫(單位:℃)時得到如下數(shù)據:36.3,36.4,36.5,36.7,36.6,36.5,36.5,對這組數(shù)據描述正確的是( 。
A.眾數(shù)是36.5B.中位數(shù)是36.7
C.平均數(shù)是36.6D.方差是0.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,Rt△OAB的直角頂點B在x軸的正半軸上,點A在第一象限,反比例函數(shù)y=(x>0)的圖象經過OA的中點C.交AB于點D,連結CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)如圖①,若點D是拋物線上一動點,設點D的橫坐標為m(0<m<3),連接CD,BD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;
(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com