【題目】如圖,直線,相交于點平分

1)若,,求的度數(shù);

2)若平分,,設(shè)

①求證;

②求的度數(shù).

【答案】1)∠EOF=55°;(2)①證明見解析;②∠AOC=100°

【解析】

1)由對頂角及角平分線的定義即可計算得出;

2)①由對頂角得出∠BOC=AOD再根據(jù)角平分線的定義即可得到∠BOE=DOE,兩式相加即可;

②根據(jù)角度的運算及角平分線的定義,用x表達出∠BOF的度數(shù),再解方程即可.

解:(1)∵直線,相交于點,

∴∠BOD=AOC=70°,

平分

∴∠BOE=DOE=35°,

又∵,

∴∠EOF=DOF-DOE=90°-35°=55°

2)①∵直線相交于點,

∴∠BOC=AOD

又∵平分,

∴∠BOE=DOE

∴∠BOC+BOE=∠AOD+∠DOE

②∵,

∴∠COE=x°,

∴∠DOE=180°-x°

OE平分∠BOD

∴∠BOE=DOE=180°-x°

平分

∴∠COF=EOF=

∴∠BOF=∠EOF-∠BOE=

解得:

∴∠COE=130°,∠BOE=∠DOE=180°-130°=50°,

∴∠AOC=∠BOD=2∠DOE=100°

故∠AOC=100°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖所示,有以下結(jié)論:①abc>0;②abc>1;③abc>0;④4a-2bc<1;⑤b+2a=0. 其中所有正確的結(jié)論是______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出:某段樓梯共有10個臺階,如果某同學在上臺階時,可以一步1個臺階,也可以一步2個臺階.那么該同學從該段樓梯底部上到頂部共有多少種不同的走法?

問題探究:

為解決上述實際問題,我們先建立如下數(shù)學模型:

如圖①,用若干個邊長都為1的正方形(記為1×1矩形)和若干個邊長分別為12的矩形(記為1×2矩形),要拼成一個如圖②中邊長分別為1和n的矩形(記為矩形),有多少種不同的拼法?(設(shè)表示不同拼法的個數(shù))

為解決上述數(shù)學模型問題,我們采取的策略和方法是:一般問題特殊化.

探究一:先從最特殊的情形入手,即要拼成一個1×1矩形,有多少種不同拼法?

顯然,只有1種拼法,如圖③,即=1種.

探究二:要拼成一個1×2矩形,有多少種不同拼法?

可以看出,有2種拼法,如圖④,即=2種.

探究三:要拼成一個1×3矩形,有多少種不同拼法?

拼圖方法可分為兩類:一類是在圖④這21×2矩形上方,各拼上一個1×1矩形,即這類拼法共有=2種;另一類是在圖③這1種1×1矩形上方拼上一個1×2矩形,即這類拼法有=1種.如圖⑤,即=+= 2+1=3(種).

探究四:仿照上述探究過程,要拼成一個1×4矩形,有多少種不同拼法?請畫示意圖說明并求出結(jié)果.

探究五:要拼成一個1×5矩形,仿照上述探究過程,得出=     種不同拼法.

(直接寫出結(jié)果,不需畫圖).

問題解決:請你根據(jù)上述中的數(shù)學模型,解答問題提出中的實際問題.

(寫出解答過程,不需畫圖).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

(x-1)(x+1)=x2-1;

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1;

……

(1)猜想(x-1)(xn+xn-1+xn-2+…+x+1)=______

運用上述規(guī)律,試求:

(2)219+218+217+…+23+22+2+1

(3)52018+52017+52016+…+53+52+5+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段,點、點在直線上,并且,ACCB=12,BDAB=23,則AB=__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號汽車油箱容量為40L,每行駛100km耗油10L.設(shè)一輛加滿油的該型號汽車行駛路程為x(km),行駛過程中油箱內(nèi)剩余油量為y(L)

(1)求yx之間的函數(shù)表達式;

(2)為了有效延長汽車使用壽命,廠家建議每次加油時油箱內(nèi)剩余油量不低于油箱容量的四分之一,按此建議,求該輛汽車最多行駛的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在東營市中小學標準化建設(shè)工程中,某學校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是線段AB的垂直平分線,則∠CAD=CBD.請說明理由:

解:∵ CD是線段AB的垂直平分線

AC=BC,AD=DB

ADCBDC中,

ADC≌和BDC( .

CAD=CBD .

查看答案和解析>>

同步練習冊答案